Question

Let F be a field and let f(x) be an element of F[x] be an an...

Let F be a field and let f(x) be an element of F[x] be an an irreducible polynomial. Suppose K is an extension field containing F and that alpha is a root of f(x). Define a function f: F[x] ---> K by f:g(x) = g(alpha). Prove the ker(f) =<f(x)>.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
True or False, explain: 1. Any polynomial f in Q[x] with deg(f)=3 and no roots in...
True or False, explain: 1. Any polynomial f in Q[x] with deg(f)=3 and no roots in Q is irreducible. 2. Any polynomial f in Q[x] with deg(f)-4 and no roots in Q is irreducible. 3. Zx40 is isomorphic to Zx5 x Zx8 4. If G is a finite group and H<G, then [G:H] = |G||H| 5. If [G:H]=2, then H is normal in G. 6. If G is a finite group and G<S28, then there is a subgroup of G...
Let E/F be a field extension, and let α be an element of E that is...
Let E/F be a field extension, and let α be an element of E that is algebraic over F. Let p(x) = irr(α, F) and n = deg p(x). (a) For f(x) ∈ F[x], let r(x) (∈ F[x]) be the remainder of f(x) when divided by p(x). Prove that f(x) +p(x)= r(x)+p(x)in F[x]/p(x). (b) Prove that if |F| < ∞, then | F[x]/p(x)| = |F|n. (For a set A, we denote by |A| the number of elements in A.)
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree...
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree p whose Galois group is the dihedral group D_2p of a regular p-gon. Prove that f (x) has either all real roots or precisely one real root.
Let F be an ordered field.  Let S be the subset [a,b) i.e, {x|a<=x<b, x element of...
Let F be an ordered field.  Let S be the subset [a,b) i.e, {x|a<=x<b, x element of F}. Prove that infimum and supremum exist or do not exist.
Let F be a field and let a(x), b(x) be polynomials in F[x]. Let S be...
Let F be a field and let a(x), b(x) be polynomials in F[x]. Let S be the set of all linear combinations of a(x) and b(x). Let d(x) be the monic polynomial of smallest degree in S. Prove that d(x) divides a(x).
True/False, explain: 1. If G is a finite group and G28, then there is a subgroup...
True/False, explain: 1. If G is a finite group and G28, then there is a subgroup of G of order 2401=74 2. If |G|=19, then G is isomorphic to Z19. 3. If F subset of K is a degree 5 field extension, any element b in K is the root of some polynomial p(x) in F[x] 4. If F subset of K is a degree 5 field extension, viewing K as a vector space over F, Aut(K, F) consists of...
Let F be a field and f(x), g(x) ? F[x] both be of degree ? n....
Let F be a field and f(x), g(x) ? F[x] both be of degree ? n. Suppose that there are distinct elements c0, c1, c2, · · · , cn ? F such that f(ci) = g(ci) for each i. Prove that f(x) = g(x) in F[x].
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite...
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite order n. (a) Prove that f(a) has finite order k, where k is a divisor of n. (b) If f is an isomorphism, prove that k=n.
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
Let f(x) be polynomial function in field F[x]. f’(x) be the derivative of f(x). Given the...
Let f(x) be polynomial function in field F[x]. f’(x) be the derivative of f(x). Given the greatest common factor (f(x), f’(x))=1. And (x-a)|f(x). Show that (x-a)^2 can not divide f(x).