Question

1. (a) Determine whether or not F is a conservative vector field. If it is, find...

1. (a) Determine whether or not F is a conservative vector field. If it is, find the potential function for F.

(b) Evaluate R C1 F · dr and R C2 F · dr where C1 is the straight line path from (0, −1) to (3, 0), while C2 is the union of two straight line paths: first piece from (0, −1) to (0, 0) and then second piece from (0, 0) to (3, 0). (When applicable, use the Fundamental Theorem of Line Integrals!!)

F(x, y) = (xy + y 2 )i + (x 2 + 2xy)j.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If...
(a) Is the vector field F = <e^(−x) cos y, e^(−x) sin y> conservative? (b) If so, find the associated potential function φ. (c) Evaluate Integral C F*dr, where C is the straight line path from (0, 0) to (2π, 2π). (d) Write the expression for the line integral as a single integral without using the fundamental theorem of calculus.
Consider the vector force field given by F⃗ = 〈2x + y, 3y + x〉 (a)...
Consider the vector force field given by F⃗ = 〈2x + y, 3y + x〉 (a) Let C1 be the straight line segment from (2, 0) to (−2, 0). Directly compute ∫ C1 F⃗ · d⃗r (Do not use Green’s Theorem or the Fundamental Theorem of Line Integration) (b) Is the vector field F⃗ conservative? If it is not conservative, explain why. If it is conservative, find its potential function f(x, y) Let C2 be the arc of the half-circle...
Determine whether or not F is a conservative vector field. If it is, find a function...
Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y) = (y2 − 8x)i + 2xyj
Determine whether or not F is a conservative vector field. If it is, find a function...
Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y) = (y2 − 8x)i + 2xyj
Determine whether or not the vector field is conservative. If it is conservative, find a function...
Determine whether or not the vector field is conservative. If it is conservative, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y, z) = 8xyi + (4x2 + 10yz)j + 5y2k Find: f(x, y, z) =
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by...
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by finding a function f such that and use that to evaluate where C is any path from (1,0,-2) to (4,6,3)
Consider the vector field →F=〈3x+7y,7x+5y〉F→=〈3x+7y,7x+5y〉 Is this vector field Conservative? yes or no If so: Find...
Consider the vector field →F=〈3x+7y,7x+5y〉F→=〈3x+7y,7x+5y〉 Is this vector field Conservative? yes or no If so: Find a function ff so that →F=∇fF→=∇f f(x,y) =_____ + K Use your answer to evaluate ∫C→F⋅d→r∫CF→⋅dr→ along the curve C: →r(t)=t2→i+t3→j,  0≤t≤3r→(t)=t2i→+t3j→,  0≤t≤3
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x,...
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x, y) such that F~ (x, y) = ∇f(x, y) = h ∂f ∂x , ∂f ∂y i by integrating P and Q with respect to the appropriate variables and combining answers. Then use that potential function to directly calculate the given line integral (via the Fundamental Theorem of Line Integrals): a) F~ 1(x, y) = hx 2 , y2 i Z C F~ 1...
Evaluate C F · dr using the Fundamental Theorem of Line Integrals. F(x, y, z) =...
Evaluate C F · dr using the Fundamental Theorem of Line Integrals. F(x, y, z) = 2xyzi + x2zj + x2yk C: smooth curve from (0, 0, 0) to (1, 7, 2)
Evaluate C F · dr using the Fundamental Theorem of Line Integrals. F(x, y, z) =...
Evaluate C F · dr using the Fundamental Theorem of Line Integrals. F(x, y, z) = 2xyzi + x2zj + x2yk C: smooth curve from (0, 0, 0) to (1, 7, 2)