Question

Suppose n = rs where r and s are distinct primes, and let p be a...

Suppose n = rs where r and s are distinct primes, and let p be a prime. Determine (with proof, of course) the number of irreducible degree n monic polynomials in Fp[x]. (Hint: look at the proof for the number of prime degree polynomials)

The notation Fp means the finite field with q elements

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Show that the equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq. you may use the following lemma: If p is prime...
Consider all integers between 1 and pq where p and q are two distinct primes. We...
Consider all integers between 1 and pq where p and q are two distinct primes. We choose one of them, all with equal probability. a) What is the probability that we choose any given number? b) What is the probability that we choose a number that is i) relatively prime to p? ii) relatively prime to q? iii) relatively prime to pq?
(Sage Exploration) In class, we primarily have worked with the field Q and its finite extensions....
(Sage Exploration) In class, we primarily have worked with the field Q and its finite extensions. For each p ∈ Z primes, we can also study the field Z/pZ , which I will also denote Fp, and its finite extensions. Sage understands this field as GF(p). (a) Define the polynomial ring S = F2[x]. (b) Find all degree 2 irreducible polynomials. How many are there? For each, completely describe the corresponding quadratic field extensions of F2. (c) True of false:...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. I need to prove that: a) R is an equivalence relation. (which I have) b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq I...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n
Let p(x) be an irreducible polynomial of degree n over a finite field K. Show that...
Let p(x) be an irreducible polynomial of degree n over a finite field K. Show that its Galois group over K is cyclic of order n and then show how the Galois group of x3 − 1 over Q is cyclic of order 2.
Suppose that in a Hilbert plane, lines m and n are parallel. Let P be a...
Suppose that in a Hilbert plane, lines m and n are parallel. Let P be a point on m, and Q the point on n so that line P Q is perpendicular to n. Is there another point R on m so that the perpendicular line RS to n through R (where S is incident with n) so that segment P Q is congruent to RS? Under what conditions? (Note that you need to provide some further hypotheses to make...
1. Let p be any prime number. Let r be any integer such that 0 <...
1. Let p be any prime number. Let r be any integer such that 0 < r < p−1. Show that there exists a number q such that rq = 1(mod p) 2. Let p1 and p2 be two distinct prime numbers. Let r1 and r2 be such that 0 < r1 < p1 and 0 < r2 < p2. Show that there exists a number x such that x = r1(mod p1)andx = r2(mod p2). 8. Suppose we roll...
Let E be a field of characteristic p, where p is a prime number. Show that...
Let E be a field of characteristic p, where p is a prime number. Show that for all x, y that are elements of E, we have (x + y)^p =x^p + y^p, and hence by induction, (x + y)^p^n = x^p^n + y^p^n .
Let A[1, . . . , n] be an array of n distinct numbers. If i...
Let A[1, . . . , n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i, j) is called an inversion of A. 1. Which arrays with distinct elements from the set {1, 2, . . . , n} have the smallest and the largest number of inversions and why? State the expressions exactly in terms of n. 2. For any 0 < a < 1/2, construct an array for...