Question

Assume that (F,+,⋅) is a commutative field totally ordered. Given 3 elements a, b, c in...

Assume that (F,+,⋅) is a commutative field totally ordered.

Given 3 elements a, b, c in F, prove that if a<b, then a+c<b+c.

Prove that if 0<a<b, then b^{-1}<a^{-1}

Homework Answers

Answer #1

Let   is a commutative field totally ordered.

Given that,

Let   i.e for some   we can say that  

as  (Proved)

Given that   and   i.e. both   are positive.

so for some   we can say that  

Now,

as,   

(Proved)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Let a,b,c be elements of a field F. Prove that if a not= 0, then...
(a) Let a,b,c be elements of a field F. Prove that if a not= 0, then the equation ax+b=c has a unique solution. (b) If R is a commutative ring and x1,x2,...,xn are independent variables over R, prove that R[x σ(1),x σ (2),...,x σ (n)] is isomorphic to R[x1,x2,...,xn] for any permutation σ of the set {1,2,...,n}
Let a,b and epsilon be elements of an ordered field a) show that if a<b+epsilon for...
Let a,b and epsilon be elements of an ordered field a) show that if a<b+epsilon for every epsilon>0 then a<=b b) use part a) to show that if |a-b|<epsilon for all epsilon>0 then a=b
Let F be an ordered field.  Let S be the subset [a,b) i.e, {x|a<=x<b, x element of...
Let F be an ordered field.  Let S be the subset [a,b) i.e, {x|a<=x<b, x element of F}. Prove that infimum and supremum exist or do not exist.
Consider the set Q(√3) ={a+b√3| a,b∈Q}. We have the associative properties of usual addition and usual...
Consider the set Q(√3) ={a+b√3| a,b∈Q}. We have the associative properties of usual addition and usual multiplication from the field of real number R. a)Show that Q (√3) is closed under addition, contains the additive identity (0,zero) of R, each element contains the additive inverses, and say if addition is commutative. What does this tell you about (Q(√3,+)? b) Prove that Q(√3) is a commutative ring with unity 1 c) Prove that Q(√3) is a field by showing every nonzero...
Given vector field ?⃗ =< −?, ?? > on the curve C given ?⃗(?) =< 3...
Given vector field ?⃗ =< −?, ?? > on the curve C given ?⃗(?) =< 3 cos ?, 3 sin ? > for 0 ≤ ? ≤ 2? a. Determine the circulation of ?⃗ on C b. Determine the flux of ?⃗ on C
Let F be a field and Aff(F) := {f(x) = ax + b : a, b...
Let F be a field and Aff(F) := {f(x) = ax + b : a, b ∈ F, a ≠ 0} the affine group of F. Prove that Aff(F) is indeed a group under function composition. When is Aff(F) abelian?
(6) (a) Give an example of a ring with 9 elements which is not a field....
(6) (a) Give an example of a ring with 9 elements which is not a field. Explain your answer. (b) Give an example of a field of 25 elements. Explain why. (c) Find a non-zero polynomial f(x) in Z3[x] such that f(a) = 0 for every a ? Z3. (d) Find the smallest ideal of Q that contains 3/4.
Let a, b ∈ R. Assume that vector F and vector G are C^1 vector fields...
Let a, b ∈ R. Assume that vector F and vector G are C^1 vector fields on R^3 . Prove that ∇ × (aF~ + bG~ ) = a∇ × F + b∇ × G.
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the...
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the additative identity is 1? (b) what is the multipicative identity? (Make sure you proe that your claim is true). (c) Prove that the ring is commutative. (d) Prove that the ring is an integral domain. (Abstrat Algebra)
If C is the curve given by ?(?)=(1+1sin?)?+(1+3sin2?)?+(1+2sin3?)?, 0≤?≤?2 and F is the radial vector field...
If C is the curve given by ?(?)=(1+1sin?)?+(1+3sin2?)?+(1+2sin3?)?, 0≤?≤?2 and F is the radial vector field ?(?,?,?)=??+??+?? compute the work done by F on a particle moving along C.