Question

Let ? = 〈?, ?|? 4 = ? 6 = ?, ?? = ??〉. Let ?:...

Let ? = 〈?, ?|? 4 = ? 6 = ?, ?? = ??〉. Let ?: ℤ4 × ℤ6 → ? by ?(c,d) = ? c? d for all c ∈ {0,1,2,3} and d∈ {0, 1, 2, 3, 4, 5}.

prove that ? is a homomorphism and if ? is an isomorphism

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite...
4. Let f : G→H be a group homomorphism. Suppose a∈G is an element of finite order n. (a) Prove that f(a) has finite order k, where k is a divisor of n. (b) If f is an isomorphism, prove that k=n.
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:B→R f(x)↦f(a) It is called the evaluation homomorphism. (a) Prove that the evaluation homomorphism is a ring homomorphism (b) Describe the image of the evaluation homomorphism. (c) Describe the kernel of the evaluation homomorphism. (d) What does the First Isomorphism Theorem for...
Prove this statement: Let ϕ : A1 → A2 be a homomorphism and let N =...
Prove this statement: Let ϕ : A1 → A2 be a homomorphism and let N = ker ϕ. Then A1/N is isomorphic to ϕ(A1). Further ψ : A1/N → ϕ(A1) defined by ψ(aN) = ϕ(a) is an isomorphism. You must use the following elements to prove: - well-definedness - one-to-one - onto - homomorphism
Suppose G and H are groups and ϕ:G -> H is a homomorphism. Let N be...
Suppose G and H are groups and ϕ:G -> H is a homomorphism. Let N be a normal subgroup of G contained in ker(ϕ). Define a mapping ψ: G/N -> H by ψ (aN)= ϕ (a) for all a in G. Prove that ψ is a well-defined homomorphism from G/N to H. Is ψ always an isomorphism? Prove it or give a counterexample
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that p(-1)=0. (a) Prove that S is a subspace of the vector space of all polynomials. (b) Find a basis for S. (c) What is the dimension of S? 6. Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2 =(1,2,-6,1), ?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2 =(3,1,2,-2). Prove that V=W.
Let α = 4√ 3 (∈ R), and consider the homomorphism ψα : Q[x] → R...
Let α = 4√ 3 (∈ R), and consider the homomorphism ψα : Q[x] → R f(x) → f(α). (a) Prove that irr(α, Q) = x^4 −3 (b) Prove that Ker(ψα) = <x^4 −3> (c) By applying the Fundamental Homomorphism Theorem to ψα, prove that L ={a0+a1α+a2α2+a3α3 | a0, a1, a2, a3 ∈ Q }is the smallest subfield of R containing α.
Let C be a normal subgroup of the group A and let D be a normal...
Let C be a normal subgroup of the group A and let D be a normal subgroup of the group B. (a) Prove that C × D is a normal subgroup of A × B (b) Prove that the map φ : A × B → (A/C) × (B/D) given by φ((m, n)) = (mC, nD) is a group homomorphism. (c) Use the fundamental homomorphism theorem to prove that (A × B)/(C × D) ∼= (A/C) × (B/D)
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by...
4. (30) Let C be the ring of complex numbers,and letf:C→C be the map defined by f(z) = z^3. (i) Prove that f is not a homomorphism of rings, by finding an explicit counterex- ample. (ii) Prove that f is not injective. (iii) Prove that the principal ideal I = 〈x^2 + x + 1〉 is not a prime ideal of C[x]. (iv) Determine whether or not the ring C[x]/I is a field.
Let G = 〈(1 2 3 4 5 6), (1 6)(2 5)(3 4)〉. Let H1 :=...
Let G = 〈(1 2 3 4 5 6), (1 6)(2 5)(3 4)〉. Let H1 := 〈(1 4)(2 5)(3 6)〉 and H2 := 〈(1 6)(2 5)(3 4)〉. Determine if the subgroups H1 and H2 are normal subgroups of G.
Let f: Z6 --> Z2 X Z3 be the function given by f([a]6) = ([a]2,[a]3). (a)...
Let f: Z6 --> Z2 X Z3 be the function given by f([a]6) = ([a]2,[a]3). (a) Show that f is well-defined; that is, show that if [a]6=[b]6, then f([a]6) = f([b]6). (b) Prove that f is an isomorphism.