Question

T(v) = {(10 −2 −2) , (−2 10 −2) , ( −2 −2 10 )} (Each...

T(v) = {(10 −2 −2) , (−2 10 −2) , ( −2 −2 10 )}

(Each row is in parenthesis)

Show that the linear transformation T : R 3 → R 3,  T(V)  is one-to-one, onto and find the inverse linear transformation of T.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V and W be vector spaces and let T:V→W be a linear transformation. We say...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say a linear transformation S:W→V is a left inverse of T if ST=Iv, where ?v denotes the identity transformation on V. We say a linear transformation S:W→V is a right inverse of ? if ??=?w, where ?w denotes the identity transformation on W. Finally, we say a linear transformation S:W→V is an inverse of ? if it is both a left and right inverse of...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W by T(x1, x2) = (x1 − x2, x1, x2). Find the matrix representation of T using the standard bases in both V and W 11 Let T :R3 →R3 be a linear transformation such that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), T(0, 0, 1) = (0, −2, 2). Compute T(−2, 4, −1).
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
Let T:V-->V be a linear transformation and let T^3(x)=0 for all x in V. Prove that...
Let T:V-->V be a linear transformation and let T^3(x)=0 for all x in V. Prove that R(T^2) is a subset of N(T).
Give an example of each if possible, if not possible tell why. 1) A set of...
Give an example of each if possible, if not possible tell why. 1) A set of non-zero vectors in R4 that span R4 but are not linearly independent 2) A linear transformation T: R3 -> R3 that is one to one but NOT onto 3) A Linear transformation T: R3 -> R4 that is one to one 4) A Linear transformation T: R4 -> R3 that is onto 5) A Linear transformation T: R3 -> R4 that is onto
let T: P3(R) goes to P3(R) be defined by T(f(x))= xf'' (x) + f'(x). Show that...
let T: P3(R) goes to P3(R) be defined by T(f(x))= xf'' (x) + f'(x). Show that T is a linear transformation and determine whther T is one to one and onto.
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is...
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is a linear transformation from V to W and suppose also that {T(u), T(v), T(w)} is a basis for W. Prove from the definitions that T is both 1-1 and onto.
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that...
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R 4 → R) Problem 3. (20 pts.) Which of the following statements are true about the transformation matrix...
(3) Let V be a finite dimensional vector space, and let T: V® V be a...
(3) Let V be a finite dimensional vector space, and let T: V® V be a linear transformation such that rk(T) = rk(T2). a) Show that ker(T) = ker(T2). b) Show that 0 is the only vector that lies in both the null space of T, and the range space of T
Let T(V)=AV be a linear transformation where A=(3 -2 6 -1 15, 4 3 8 10...
Let T(V)=AV be a linear transformation where A=(3 -2 6 -1 15, 4 3 8 10 -14, 2 -3 4 -4 20) a.) construct a basis of the kernal T b.) calculate the basis of the range of T c.) determine the rank and nullity of T
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT