Question

Let the functions f (t) = | t |3 and g (t) = t3. Only one...

Let the functions f (t) = | t |3 and g (t) = t3.

Only one of the following statements is false. Which?

a)W(f, g) = 0 at t = 0.

b) The functions f and g are not solutions of the same linear EDO of order 2 on R.

c) f (t)/g(t) ≠ const for all t ∈ R.

d) f and g are linearly dependent.

e) The wronskian of f and g is zero over all R.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?
Consider the functions  f (t)  =  e t and  g(t)  =  e−3t  defined on  0  ≤ ...
Consider the functions  f (t)  =  e t and  g(t)  =  e−3t  defined on  0  ≤  t  <  ∞. (a) ( f ∗ g)(t) can be calculated as t ∫ 0 h(w, t) dw Enter the function h(w, t) into the answer box below. (b) ( f ∗ g)(t) can also be calculated as ℒ  −1{H(s)}. Enter the function H(s) into the answer box below. (c) Evaluate ( f ∗ g)(t)
(a) Consider x^2 + 7x + 15 = f(x) and e^x = g(x) which are vectors...
(a) Consider x^2 + 7x + 15 = f(x) and e^x = g(x) which are vectors of F(R, R) with the usual addition and scalar multiplication. Are these functions linearly independent? (b) Let S be a finite set of linearly independent vectors {u1, u2, · · · , un} over the field Z2. How many vectors are in Span(S)? (c) Is it possible to find three linearly dependent vectors in R^3 such that any two of the three are not...
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
Let S = {a,b,c,d,e,f,g} and let T = {1,2,3,4,5,6,7,8}. a.  How many different functions are there from...
Let S = {a,b,c,d,e,f,g} and let T = {1,2,3,4,5,6,7,8}. a.  How many different functions are there from S to T? b. How many different one-to-one functions are there from S to T? c. How many different one-to-one functions are there from T to S? d. How many different onto functions are there from T to S?
1. Let A = {1,2,3,4} and let F be the set of all functions f from...
1. Let A = {1,2,3,4} and let F be the set of all functions f from A to A. Prove or disprove each of the following statements. (a)For all functions f, g, h∈F, if f◦g=f◦h then g=h. (b)For all functions f, g, h∈F, iff◦g=f◦h and f is one-to-one then g=h. (c) For all functions f, g, h ∈ F , if g ◦ f = h ◦ f then g = h. (d) For all functions f, g, h ∈...
a) Let f : [a, b] −→ R and g : [a, b] −→ R be...
a) Let f : [a, b] −→ R and g : [a, b] −→ R be differentiable. Then f and g differ by a constant if and only if f ' (x) = g ' (x) for all x ∈ [a, b]. b) For c > 0, prove that the following equation does not have two solutions. x3− 3x + c = 0, 0 < x < 1 c) Let f : [a, b] → R be a differentiable function...
True or False? No reasons needed. (e) Suppose β and γ are bases of F n...
True or False? No reasons needed. (e) Suppose β and γ are bases of F n and F m, respectively. Every m × n matrix A is equal to [T] γ β for some linear transformation T: F n → F m. (f) Recall that P(R) is the vector space of all polynomials with coefficients in R. If a linear transformation T: P(R) → P(R) is one-to-one, then T is also onto. (g) The vector spaces R 5 and P4(R)...
7. Answer the following questions true or false and provide an explanation. • If you think...
7. Answer the following questions true or false and provide an explanation. • If you think the statement is true, refer to a definition or theorem. • If false, give a counter-example to show that the statement is not true for all cases. (a) Let A be a 3 × 4 matrix. If A has a pivot on every row then the equation Ax = b has a unique solution for all b in R^3 . (b) If the augmented...
21.2. Let f(n) and g(n) be functions from N→R. Prove or disprove the following statements. (a)...
21.2. Let f(n) and g(n) be functions from N→R. Prove or disprove the following statements. (a) f(n) = O(g(n)) implies g(n) = O(f(n)). (c) f(n)=?(g(n)) if and only if (n)=O(g(n)) and g(n)=O(f(n)).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT