Question

Having knowledge of composite functions, we know that the mastery of some functions are the image...

Having knowledge of composite functions, we know that the mastery of some functions are the image of others, that is, a composite function H (x) can be given by H (x) = f (g (x)). Many functions of this type are transcendent, meaning that they have no algebraic formulation. Given that if f (x) = sen (x), f ’(x) = cos (x), and considering your knowledge of the chain rule for derivation of composite functions, analyze the following statements.

I. The derivative of f (x) = (x + 2) ² is 2x + 4.

II. The function H (x) = f (g (x)), where f (x) = sen (x) and g (x) = x² + x, has derivative H '(x) = (2x + 1) * cos ( x² + x).

III. To derive transcendent functions just apply the rules for derivatives of polynomial functions. IV. The derivative of f (f (x)) is equal to cos² (x) sen (x). Only what is stated in:

  1. II, e IV.

  2. I e III.

  3. I, III e IV.

  4. I e II.

  5. I, II e IV.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The algebraic independence of some functions delimits some categories of functions. Knowing how to recognize when...
The algebraic independence of some functions delimits some categories of functions. Knowing how to recognize when a function is algebraic or not helps in some mathematical manipulations, such as derivation. In view of the knowledge about algebraic functions, analyze the following statements: I. Algebraic functions are those defined only by basic algebra operations. II. There are explicit non-algebraic functions. III. The transcendent functions are algebraic functions. IV. f (x) = ln (x) is not an algebraic function. Only what is...
Consider the following functions f(x) =x^2, g(x) = lnx, h(x) = cosx For each of the...
Consider the following functions f(x) =x^2, g(x) = lnx, h(x) = cosx For each of the following parts, you may use compositions, products, and sums of thefunctions above, but no others. For example, we can combine in the following waysh(g(x)) = cos(lnx), or g(x)h(x) = lnxcosx, or g(x) +h(x) = lnx+ cosx show how derivative rules apply to the function you came up within order to produce the requested derivative. 1)A functionk(x) whose derivative is k′(x) = −tanx= -(sinx/cosx) 2)...
3) If A =     3   1     and   B =    1    7                   0 -2  &
3) If A =     3   1     and   B =    1    7                   0 -2                     5    -1 Find a)      BA            b) determinant B         c) Adjoint A                d) A-1                     4) Using matrix method solve the following simultaneous equations                           5x – 3y = 1                         2x – 2y = -2    5) Given that f(x) = 6x - 5 g(x) = 3x + 4 and h(x) = 4x – 6                                                                                          2     Find:- i)...
Let f ( x ) = cot ⁡ x for 0 < x < π ....
Let f ( x ) = cot ⁡ x for 0 < x < π . (a) State the range of f and graph it on the interval given above. (b) State the domain and range of g ( x ) = cot − 1 ⁡ x . Graph g ( x ) . (c) State whether the graph increases or decreases on its domain. (d) Find each of the following limits based on the graph of g ( x...
a.)Consider the function f (x) = 3x/ x^2 +1 i) Evaluate f (x+1), and f (x)+1....
a.)Consider the function f (x) = 3x/ x^2 +1 i) Evaluate f (x+1), and f (x)+1. Explain the difference. Do the same for f (2x) and 2f (x). ii) Sketch y = f (x) on the interval [−2, 2]. iii) Solve the equations f (x) = 1.2 and f (x) = 2. In each case, if a solution does not exist, explain. iv) What is the domain of f (x)? b.)Let f (x) = √x −1 and g (x) =...
​​​​​​ Below are ten functions. Find the first derivative of each. All of the derivatives can...
​​​​​​ Below are ten functions. Find the first derivative of each. All of the derivatives can be found by using combinations of the constant rule, power function rule and sum-difference rule.   Do not use the product rule. It is not needed. The degree of difficulty (more or less) increases from (a) to (j). Be sure to show intermediate work. Five points are awarded for correctly developed derivatives. There is no partial credit, because an incorrect derivative is useless. For example,...
Answer each of the questions below. (a) Find an equation for the tangent line to the...
Answer each of the questions below. (a) Find an equation for the tangent line to the graph of y = (2x + 1)(2x 2 − x − 1) at the point where x = 1. (b) Suppose that f(x) is a function with f(130) = 46 and f 0 (130) = 1. Estimate f(125.5). (c) Use linear approximation to approximate √3 8.1 as follows. Let f(x) = √3 x. The equation of the tangent line to f(x) at x =...
The following questions will provide practice working with simple linear functions. All questions refer to a...
The following questions will provide practice working with simple linear functions. All questions refer to a coordinate graph with the variable X on the horizontal axis and the variable Y on the vertical axis. a. If two points on a straight line are (X = 3, Y = 2) and (X = 12, Y = 5), what is the slope of the line? b. If point A is at (X = 20, Y = 20) and point B is at...
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive...
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive the consumer’s marginal rate of substitution (b) Calculate the derivative of the MRS with respect to X. (c) Is the utility function homogenous in X? (d) Re-write the regular budget constraint as a function of PX , X, PY , &I. In other words, solve the equation for Y . (e) State the optimality condition that relates the marginal rate of substi- tution to...
Amy has income of $M and consumes only two goods: composite good y with price $1...
Amy has income of $M and consumes only two goods: composite good y with price $1 and chocolate (good x) that costs $px per unit. Her util- ity function is U(x,y) = 2xy; and marginal utilities of composite good y and chocolate are: MUy = 2x and MUx = 2y. (a) State Amy’s optimization problem. What is the objective function? What is a constraint? (b) Draw the Amy’s budget constraint. Place chocolate on the horizontal axis, and ”expenditure all other...