Question

1. Let B = {(−1,2),(1,1)} = {w1,w2} be a basis for R2, and v = (3,...

1. Let B = {(−1,2),(1,1)} = {w1,w2} be a basis for R2, and v = (3, 2). Find (v)B.

2. Find the closest point in the plane 3x−y+2z = 0 to the point p(−1, 2, −1). What is the distance from p to this plane?

Thank you.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V = W = R2. Choose the basis B = {x1, x2} of V ,...
Let V = W = R2. Choose the basis B = {x1, x2} of V , where x1 = (2, 3), x2 = (4,−5) and choose the basis D = {y1,y2} of W, where y1 = (1,1), y2 = (−3,4). Find the matrix of the identity linear mapping I : V → W with respect to these bases.
On set R2 define ∼ by writing(a,b)∼(u,v)⇔ 2a−b = 2u−v. Prove that∼is an equivalence relation on...
On set R2 define ∼ by writing(a,b)∼(u,v)⇔ 2a−b = 2u−v. Prove that∼is an equivalence relation on R2 In the previous problem: (1) Describe [(1,1)]∼. (That is formulate a statement P(x,y) such that [(1,1)]∼ = {(x,y) ∈ R2 | P(x,y)}.) (2) Describe [(a, b)]∼ for any given point (a, b). (3) Plot sets [(1,1)]∼ and [(0,0)]∼ in R2.
g (u, v) is a differentiable function and g (1,2) = 100, gu (1,2) = 3,...
g (u, v) is a differentiable function and g (1,2) = 100, gu (1,2) = 3, gv (1,2) = 7 are given. The function f is defined as f (x, y, z) = g (xyz, x ^ 2, y^2z). Find the equation of the tangent plane at the point (1,1,1) of the f (x, y, z) = 100 surface.
A firm produces a single output using two inputs x1, x2. Let p, w1, w2 be...
A firm produces a single output using two inputs x1, x2. Let p, w1, w2 be the prices. The production function f is C2 (twice continuously differentiable). Atp=5,w1 =1,w2 =2,theoptimalinputsarex∗1 =2,x∗2 =2. Ifεx1p =0.2 (the elasticity of x1 w.r.t. p), εx1w1 = −0.4 (the elasticity of x1 w.r.t. w1), and εx2 w2 = −0.5 (the elasticity of x2 w.r.t. w2 ), then, can you derive εx1 w2 , εx2 p and εx2w1? If so, please find them
In R^2, let u = (1,-1) and v = (1,2). a) Show that (u,v) form a...
In R^2, let u = (1,-1) and v = (1,2). a) Show that (u,v) form a basis. Call it B. b) If we call x the coordinates along the canonical basis and y the coordinates along the ordered B basis, find the matrix A such that y = Ax.
a) Let T be the plane 3x-y-2z=9. Find the shortest distance d from the point P0...
a) Let T be the plane 3x-y-2z=9. Find the shortest distance d from the point P0 = (5, 2, 1) to T, and the point Q in T that is closest to P0. Use the square root symbol where needed. d= Q= ( , , ) b) Find all values of X so that the triangle with vertices A = (X, 4, 2), B = (3, 2, 0) and C = (2, 0 , -2) has area (5/2).
Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that...
Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that this means T(x,y)=(x-2y,2x-y), and that the matrix representation of T with respect to the standard basis is A.) a. Find the matrix representation [T]BB where B={(1,1),(-1,1)} b. Find an invertible 2x2 matrix Q so that [T]B = Q-1AQ
Let the input prices be w = (w1, w2) and output price be p. Derive the...
Let the input prices be w = (w1, w2) and output price be p. Derive the cost function c (w; y) and the output supply function y (w, p) for firms with the following production functions: a] f (x1; x2) = sqrt(x1) + 2sqrt(x2) b] f (x1; x2) = min [sqrt(x1), 2 sqrt(x2)]
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
Let B = {(1, 3), (?2, ?2)} and B' = {(?12, 0), (?4, 4)} be bases...
Let B = {(1, 3), (?2, ?2)} and B' = {(?12, 0), (?4, 4)} be bases for R2, and let A = 3 2 0 4 be the matrix for T: R2 ? R2 relative to B. (a) Find the transition matrix P from B' to B. P = (b) Use the matrices P and A to find [v]B and [T(v)]B, where [v]B' = [1 ?5]T. [v]B = [T(v)]B = (c) Find P?1 and A' (the matrix for T relative...