Question

When applying finite difference to the following ODE, what is the solution to y(1)? y(0) is...

When applying finite difference to the following ODE, what is the solution to y(1)? y(0) is 4 and y(3) is 9.

Use Δx=1 Δx=1 and use forward difference for approximating derivatives.

Given ODE: y''+y'+x = 4

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose y(t) is governed by ODE t3y'''(t) + 6t2y''(t) + 4ty'(t) = 0. Solve this ODE...
Suppose y(t) is governed by ODE t3y'''(t) + 6t2y''(t) + 4ty'(t) = 0. Solve this ODE by performing the following procedure: 1) Let x = ln(t) and set y(t) = φ(x) = φ(ln(t)), 2) Use chain rule of differentiation to calculate derivatives y in terms derivatives of φ, 3) by appropriate substitution, construct an ODE governing φ(x) and solve it, 4) use this φ(x) to get back y(t).
dy/dx = 2 sqrt(y/x) + y/x (x<0) Find general solution of the given ODE
dy/dx = 2 sqrt(y/x) + y/x (x<0) Find general solution of the given ODE
find the general solution of following ”AIRY” ODE y’’+6y=0
find the general solution of following ”AIRY” ODE y’’+6y=0
10.16: Write a user-defined MATLAB function that solves a first-order ODE by applying the midpoint method...
10.16: Write a user-defined MATLAB function that solves a first-order ODE by applying the midpoint method (use the form of second-order Runge-Kutta method, Eqs(10.65),(10.66)). For function name and arguments use [x,y]=odeMIDPOINT(ODE,a,b,h,yINI). The input argument ODE is a name for the function that calculates dy/dx. It is a dummy name for the function that is imported into odeMIDPOINT. The arguments a and b define the domain of the solution, h is step size; yINI is initial value. The output arguments, x...
2nd ODE - what is the general solution of this 2nd ODE, y'' - 4y =...
2nd ODE - what is the general solution of this 2nd ODE, y'' - 4y = xe^x + cos2x ?
1) State the main difference between an ODE and a PDE? 2) Name two of the...
1) State the main difference between an ODE and a PDE? 2) Name two of the three archetypal PDEs? 3) Write the equation used to compute the Wronskian for two differentiable functions, y1 and y2. 4) What can you conclude about two differentiable functions, y1 and y2, if their Wronskian is nonzero? 5) (2 pts) If two functions, y1 and y2, solve a 2nd order DE, what does the Principle of Superposition guarantee? 6) (8 pts, 4 pts each) State...
Consider the following differential equation: dydx=x+y With initial condition: y = 1 when x = 0...
Consider the following differential equation: dydx=x+y With initial condition: y = 1 when x = 0 Using the Euler forward method, solve this differential equation for the range x = 0 to x = 0.5 in increments (step) of 0.1 Check that the theoretical solution is y(x) = - x -1 , Find the error between the theoretical solution and the solution given by Euler method at x = 0.1 and x = 0.5 , correct to three decimal places
In this problem, you will solve the following first order linear ODE: y' + (1/x)y =...
In this problem, you will solve the following first order linear ODE: y' + (1/x)y = (2/x2 )+ 1 with y(1) = 1. a) Solve the complimentary equation b) Use the solution to the complimentary equation to find the general solution c) Use the initial conditions to find the specific solution
Solve the IVP with Cauchy-Euler ODE: x^2 y''+ xy'−16y = 0; y(1) = 4, y'(1) =...
Solve the IVP with Cauchy-Euler ODE: x^2 y''+ xy'−16y = 0; y(1) = 4, y'(1) = 0
Solve the IVP with Cauchy-Euler ODE: x^2 y''+3xy'+4y=0; y(1)=0, y’(1)=−2
Solve the IVP with Cauchy-Euler ODE: x^2 y''+3xy'+4y=0; y(1)=0, y’(1)=−2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT