Question

a tank holds 90 gal of water which drains from a leak at the bottom, causing...

a tank holds 90 gal of water which drains from a leak at the bottom, causing the tank to empty in 32 min. The tank drains faster when it is newrky full because the pressure on the leak is greater. Toricelli’s Law gives the volume of water remaning in the tank after t minutes as

v(t)=90(1-t/32)^2

0<t<32

(a) find v(0) and v(32)
(b) make a table of values of v(t) for t=0,8,16,24,32 (round tiur answer to three decimal places)
(c) find the net change in the volume V as t chmages from 0 min to 32 min

Homework Answers

Answer #1

PLEASE LIKE IT RAISE YOUR THUMBS UP

IF YOU ARE HAVING ANY DOUBT FEEL FREE TO ASK IN COMMENT SECTION

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank holds 100 gallons of water, which drains from a leak at the bottom, causing...
A tank holds 100 gallons of water, which drains from a leak at the bottom, causing the tank to empty in 40 minutes. According to Toricelli's Law, the volume V of water remaining in the tank after t min is given by the function V = f(t) = 100 1 − t 40 2 . (a) Find f −1. f −1(V) = $$ Correct: Your answer is correct. What does f −1 represent? f −1 represents the rate at which...
A raised water tank has a leak at the bottom which causes the water surface to...
A raised water tank has a leak at the bottom which causes the water surface to drop from elevation 4.88m to elevation 4.57 m in a period of 12 hours. (a) What will be the elevation of the water surface in the tank after 5 full days (starting from elevation 4.88m) if no water other than the leaking water is either added or drained from the tank? The bottom of the tank is at elevation zero. (b) How long will...
A tank initially holds 100 gal of brine solution. At t = 0, fresh water is...
A tank initially holds 100 gal of brine solution. At t = 0, fresh water is poured into the tank at the rate of 5 gal/min, while the well-stirred mixture leaves the tank at the same rate. After 20 min, the tank contains 20/e lb of salt. Find the initial concentration of the brine solution inside the tank. Ans.: 0.20 lb/gal
A tank initially contains 50 gal of pure water. Brine containing 4 lb of salt per...
A tank initially contains 50 gal of pure water. Brine containing 4 lb of salt per gallon enters the tank at 2 ​gal/min, and the​ (perfectly mixed) solution leaves the tank at 3 ​gal/min. Thus, the tank is empty after exactly 50 min. ​(a) Find the amount of salt in the tank after t minutes. ​(b) What is the maximum amount of salt ever in the​ tank?
A tank contains 100 gallons of pure water. A salt solution with concentration 2.5 lb/gal enters...
A tank contains 100 gallons of pure water. A salt solution with concentration 2.5 lb/gal enters the tank at a rate of 4 gal/min. Solution drains from the tank at a rate of 4 gal/min. Find the eventual concentration of the salt solution using a qualitative analysis rather than by actually solving the DE.
(1 point) A tank contains 1520 L of pure water. A solution that contains 0.04 kg...
(1 point) A tank contains 1520 L of pure water. A solution that contains 0.04 kg of sugar per liter enters the tank at the rate 8 L/min. The solution is mixed and drains from the tank at the same rate. (a) How much sugar is in the tank at the beginning? y(0)= (b)Find the amount of sugar (in kg) after t minutes. S(t)= (c)Find the amount of the sugar after 90 minutes. S(90)=
Suppose water is leaking from a tank through a circular hole of area Ah at its...
Suppose water is leaking from a tank through a circular hole of area Ah at its bottom. When water leaks through a hole, friction and contraction of the stream near the hole reduce the volume of water leaving the tank per second to cAh 2gh , where c (0 < c < 1) is an empirical constant. A tank in the form of a right-circular cone standing on end, vertex down, is leaking water through a circular hole in its...
A tank contains 90 kg of salt and 2000 L of water: Pure water enters a...
A tank contains 90 kg of salt and 2000 L of water: Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 8 L/min. What is the amount of salt in the tank initially? Find the amount f salt in the tank after 4.5 hours. Find the concentration of salt in the solution in the tank as the time approaches infinity. (Assume your tank is large enough to...
A 50-gallon tank initially contains 10 gallons of fresh water. At t = 0, a brine...
A 50-gallon tank initially contains 10 gallons of fresh water. At t = 0, a brine solution containing 2 pounds of salt per gallon is poured into the tank at a rate of 5 gal/min. The well-stirred mixture drains from the tank at a rate of 3 gal/min. Find the amount of salt in the tank at the moment of overflow. Please use differential equations to solve this problem and please put the answer in decimal form. I did this...
A Tank contains 100g of salt and 500L of water. Water that contains (5/2)g of salt...
A Tank contains 100g of salt and 500L of water. Water that contains (5/2)g of salt per liter enters the tank at a rate of 2 (L/min). The solution is mixed and drains from the tank at a rate of 3 (L/min). Let y be the number of g of salt in the tank after t minutes. a). What is the differential equation for this scenario? and b). what is the particular solution given y(0) = 100
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT