Question

Use Fermat’s Theorem to show thata1104≡1 (mod 1105)for any a that is relatively prime to1105. That...

Use Fermat’s Theorem to show thata1104≡1 (mod 1105)for any a that is relatively prime to1105. That is,1105is a Carmichael number. You may use the factorizations

1105 = 5·13·17

1104 = 24·3·2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using Fermat’s Little theorem, find the multiplicative inverse of 4 in mod 13. Show your work....
Using Fermat’s Little theorem, find the multiplicative inverse of 4 in mod 13. Show your work. Using Euler’s theorem, find 343 mod 11.
In number theory, Wilson’s theorem states that a natural number n > 1 is prime if...
In number theory, Wilson’s theorem states that a natural number n > 1 is prime if and only if (n − 1)! ≡ −1 (mod n). (a) Check that 5 is a prime number using Wilson’s theorem. (b) Let n and m be natural numbers such that m divides n. Prove the following statement “For any integer a, if a ≡ −1 (mod n), then a ≡ −1 (mod m).” You may need this fact in doing (c). (c) The...
(7) Which of the following statement is TRUE? (A) If am−1 ≡ 1 (mod m), then...
(7) Which of the following statement is TRUE? (A) If am−1 ≡ 1 (mod m), then by Fermat’s Little Theorem m must be a prime. (B) If ac ≡ bc (mod m), then a ≡ b (mod m). (C) If a ≡ b (mod m) and n | m, then a ≡ b (mod n). (D) If 2n −1 is a prime, then 2n−2(2n −1) is a perfect number. (E) If p is a prime, then 2p −1 is also...
For any prime number p use Lagrange's theorem to show that every group of order p...
For any prime number p use Lagrange's theorem to show that every group of order p is cyclic (so it is isomorphic to Zp
Use congruences to verify that 89|244 –1 and 97|248 –1 use Fermat’s Little Theorem if possible,...
Use congruences to verify that 89|244 –1 and 97|248 –1 use Fermat’s Little Theorem if possible, show all work and explain all reasoning.
Compute 2017^2017 mod 13 Please show all steps and use Fermat's Little Theorem
Compute 2017^2017 mod 13 Please show all steps and use Fermat's Little Theorem
Prove the following statements: 1- If m and n are relatively prime, then for any x...
Prove the following statements: 1- If m and n are relatively prime, then for any x belongs, Z there are integers a; b such that x = am + bn 2- For every n belongs N, the number (n^3 + 2) is not divisible by 4.
1. Let p be any prime number. Let r be any integer such that 0 <...
1. Let p be any prime number. Let r be any integer such that 0 < r < p−1. Show that there exists a number q such that rq = 1(mod p) 2. Let p1 and p2 be two distinct prime numbers. Let r1 and r2 be such that 0 < r1 < p1 and 0 < r2 < p2. Show that there exists a number x such that x = r1(mod p1)andx = r2(mod p2). 8. Suppose we roll...
Show that there exists a prime number p such that p+4 and p+6 are also prime....
Show that there exists a prime number p such that p+4 and p+6 are also prime. [Hint: Primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, ...]
Let p be prime. Show that the equation x^2 is congruent to 1(mod p) has just...
Let p be prime. Show that the equation x^2 is congruent to 1(mod p) has just two solutions in Zp (the set of integers). We cannot use groups.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT