Question

A generalized numerical method for the initial value problemY′(x) =f(x,Y(x))Y(0) =Y0is given as:yn+1=yn+h[(1−θ)f(xn,yn) +θf(xn+1,yn+1)] (a) Show...

A generalized numerical method for the initial value problemY′(x) =f(x,Y(x))Y(0) =Y0is given as:yn+1=yn+h[(1−θ)f(xn,yn) +θf(xn+1,yn+1)]

(a) Show that the numerical method forθ=12is absolutely stable for the modeldifferential equation whenλ <0 .

(b) What is the region of absolute stabilty of the numerical method ifθ=13?

you can use

Elementary Numerical Analysis (3rd Edition)

as reference

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the numerical solution of the differential equation y'+y-x=0 using the Euler and the Runge-Kutta method...
Determine the numerical solution of the differential equation y'+y-x=0 using the Euler and the Runge-Kutta method until n = 5. The step size is 0.2, y(0) = 1. No need to show calculations, I just need the summary of results of both methods with their percent absolute error from the exact value per yn. Abs. error will be (Exact-Approx)/Exact * 100
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.
y’ – y = 2x -1 y(0) = 1 , 0 ≤ x ≤ 0.2   ...
y’ – y = 2x -1 y(0) = 1 , 0 ≤ x ≤ 0.2    Use the Euler method to solve the following initial value problem (a) Check whether the function y = 2 ex -2x- 1 is the analytical solution ; (b) Find the errors by comparing the exact values you’re your numerical results (h = 0.05 and h = 0.1) and  Discuss the issue of numerical stability.
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to...
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to estimate: y(0.1) = y(0.2) =
6. Consider the initial value problem y' = ty^2 + y, y(0) = 0.25, with (exact)...
6. Consider the initial value problem y' = ty^2 + y, y(0) = 0.25, with (exact) solution y(t). (a) Verify that the solution of the initial value problem is y(t) = 1/(3e^(-t) − t + 1) and evaluate y(1) to at least four decimal places. (b) Use Euler’s method to approximate y(1), using a step size of h = 0.5, and evaluate the difference between y(1) and the Euler’s method approximation. (c) Use MATLAB to implement Euler’s method with each...
: Consider f(x) = 3 sin(x2) − x. 1. Use Newton’s Method and initial value x0...
: Consider f(x) = 3 sin(x2) − x. 1. Use Newton’s Method and initial value x0 = −2 to approximate a negative root of f(x) up to 4 decimal places. 2. Consider the region bounded by f(x) and the x-axis over the the interval [r, 0] where r is the answer in the previous part. Find the volume of the solid obtain by rotating the region about the y-axis. Round to 4 decimal places.
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn     (∗) Observe that, if n=0...
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn     (∗) Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y1−n transforms the Bernoulli equation into the linear equation dudx+(1−n)P(x)u=(1−n)Q(x).dudx+(1−n)P(x)u=(1−n)Q(x). Consider the initial value problem y′=−y(1+9xy3),   y(0)=−3. (a) This differential equation can be written in the form (∗) with P(x)= , Q(x)= , and n=. (b) The substitution u= will transform it into the linear equation dudx+ u= . (c) Using...
(3)If H(x, y) = x^2 y^4 + x^4 y^2 + 3x^2 y^2 + 1, show that...
(3)If H(x, y) = x^2 y^4 + x^4 y^2 + 3x^2 y^2 + 1, show that H(x, y) ≥ 0 for all (x, y). Hint: find the minimum value of H. (4) Let f(x, y) = (y − x^2 ) (y − 2x^2 ). Show that the origin is a critical point for f which is a saddle point, even though on any line through the origin, f has a local minimum at (0, 0)
Given the second-order differential equation y''(x) − xy'(x) + x^2 y(x) = 0 with initial conditions...
Given the second-order differential equation y''(x) − xy'(x) + x^2 y(x) = 0 with initial conditions y(0) = 0, y'(0) = 1. (a) Write this equation as a system of 2 first order differential equations. (b) Approximate its solution by using the forward Euler method.
Let⇀H=〈−y(2 +x), x, yz〉 (a) Show that ⇀∇·⇀H= 0. (b) Since⇀H is defined and its component...
Let⇀H=〈−y(2 +x), x, yz〉 (a) Show that ⇀∇·⇀H= 0. (b) Since⇀H is defined and its component functions have continuous partials on R3, one can prove that there exists a vector field ⇀F such that ⇀∇×⇀F=⇀H. Show that F = (1/3xz−1/4y^2z)ˆı+(1/2xyz+2/3yz)ˆ−(1/3x^2+2/3y^2+1/4xy^2)ˆk satisfies this property. (c) Let⇀G=〈xz, xyz,−y^2〉. Show that⇀∇×⇀G is also equal to⇀H. (d) Find a function f such that⇀G=⇀F+⇀∇f.