Question

vectors u=(1,2,3), v=(2,5,7), w=(1,3,5) are linearly dependent or independent? (using echelon form)

vectors u=(1,2,3), v=(2,5,7), w=(1,3,5) are linearly dependent or independent? (using echelon form)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for...
Let u, vand w be linearly dependent vectors in a vector space V. Prove that for any vector z in V whatsoever, the vectors u, v, w and z are linearly dependent.
Let (u,v,w,t) be a linearly independent list of vectors in R4. Determine if (u, v-u, w+5v,...
Let (u,v,w,t) be a linearly independent list of vectors in R4. Determine if (u, v-u, w+5v, t) is a linearly independent list. Explain your reasoning and Show work.
Prove that the span of three linearly independent vectors, u, v, w is R3
Prove that the span of three linearly independent vectors, u, v, w is R3
determine the span of u=(1,2,0) v=(3,2,-1) w=(-2,0,1) and determine if u,v, and w are linearly dependent.
determine the span of u=(1,2,0) v=(3,2,-1) w=(-2,0,1) and determine if u,v, and w are linearly dependent.
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set...
Let S={u,v,w}S={u,v,w} be a linearly independent set in a vector space V. Prove that the set S′={3u−w,v+w,−2w}S′={3u−w,v+w,−2w} is also a linearly independent set in V.
Find an example of a nonzero, non-Invertible 2x2 matrix A and a linearly independent set {V,W}...
Find an example of a nonzero, non-Invertible 2x2 matrix A and a linearly independent set {V,W} of two, distinct non-zero vectors in R2 such that {AV,AW} are distinct, nonzero and linearly dependent. verify the matrix A in non-invertible, verify the set {V,W} is linearly independent and verify the set {AV,AW} is linearly dependent
3-vectors u, v, and w satisfy u⋅(v ×w)=7. Find [u,v,w]⋅[v×w, u×w,u×v]^T using properties of the triple...
3-vectors u, v, and w satisfy u⋅(v ×w)=7. Find [u,v,w]⋅[v×w, u×w,u×v]^T using properties of the triple scalar product.
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
In 3 dimensions, draw vectors u, v, w, and x such that u+v+w=x. The vectors u...
In 3 dimensions, draw vectors u, v, w, and x such that u+v+w=x. The vectors u and x share an initium. You may pick the size of your vectors. Make sure the math works. Find the angle between vector x and vector u.
Prove this: Given that V is a linearly dependent set of vectors, show that there exists...
Prove this: Given that V is a linearly dependent set of vectors, show that there exists a nontrivial linear combination of the vectors of V that yields the zero vector.