Question

Consider Dirichlet-Neumann problem uxx + uyy = 0,    −∞ < x < ∞, 0 <...

Consider Dirichlet-Neumann problem

uxx + uyy = 0,    −∞ < x < ∞, 0 < y < 1

u|y=0 = f(x)

uy|y=1 = g(x)

Make Fourier transform by x, solve problem for ODE for uˆ(k, y) which you get as a result and write u(x, y) as a Fourier integral.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve: uxx + uyy = 0 in {(x,y) st x2 + y2 < 1 , x...
Solve: uxx + uyy = 0 in {(x,y) st x2 + y2 < 1 , x > 0, y > 0} u = 0 on x=0 and y=0 ∂u/∂r = 1 on r=1
To write Laplace’s equation, Uxx + Uyy = 0, in polar coordinates, we begin with Ux...
To write Laplace’s equation, Uxx + Uyy = 0, in polar coordinates, we begin with Ux = (∂U/∂r)(∂r/∂x) + (∂U/∂θ)(∂θ/∂x) where r = √(x2+y2), θ = arctan (y/x), x = r cos θ, y = r sin θ. We get Ux = (cos θ) Ur – (1/r)(sin θ) Uθ , Uxx = [∂(Ux)/∂r] (∂r/∂x) + [∂(Ux)/∂θ](∂θ/∂x) Carry out this computation, as well as that for Uyy. Since Uxx and Uyy are both expressed in polar coordinates, their sum gives Laplace...
Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx...
Use the Fourier transform to find the solution of the following initial boundaryvalue Laplace equations uxx + uyy = 0, −∞ < x < ∞ 0 < y < a, u(x, 0) = f(x), u(x, a) = 0, −∞ < x < ∞ u(x, y) → 0 uniformlyiny as|x| → ∞.
3. Solve the Neumann problem for diffusion on the half-line: ut − kuxx = 0 subject...
3. Solve the Neumann problem for diffusion on the half-line: ut − kuxx = 0 subject to u(x, 0) = φ(x), x > 0, ux(0, t) = 0, t > 0. Use an appropriate extension of the initial data to the whole real line and simplify the expression for u(x, t) so that the domain of the integral is [0, ∞). (See the notes for a similar formula for the Dirichlet problem.)
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar...
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x) using the Fourier sine transform.
Once the temperature in an object reaches a steady state, the heat equation becomes the Laplace...
Once the temperature in an object reaches a steady state, the heat equation becomes the Laplace equation. Use separation of variables to derive the steady-state solution to the heat equation on the rectangle R = [0, 1] × [0, 1] with the following Dirichlet boundary conditions: u = 0 on the left and right sides; u = f(x) on the bottom; u = g(x) on the top. That is, solve uxx + uyy = 0 subject to u(0, y) =...
USE ODE to solve the equations: a) Uxx = XY b) Uy = 2U Note: U...
USE ODE to solve the equations: a) Uxx = XY b) Uy = 2U Note: U is a function of X and Y Is there any way to rewrite it and make it a little bit. I cant figure out , please...thank you
Consider the second order linear partial differential equation a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy...
Consider the second order linear partial differential equation a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u = 0. (1) a). Show that under a coordinate transformation ξ = ξ(x, y), η = η(x, y) the PDE (1) transforms into the PDE α(ξ, η)uξξ + 2β(ξ, η)uξη + γ(ξ, η)uηη + δ(ξ, η)uξ + (ξ, η)uη + ψ(ξ, η)u = 0, (2) where α(ξ, η) = aξ2 x + 2bξxξy + cξ2...
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x...
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x < π u(x, 0) = sin(x), ut(x, 0) = 0 u(0, t) = 1, u(π, t) = 0. Your solution should be in the form of Fourier series. Write down the formulas that determine the coefficients in the Fourier series but do not evaluate the integrals
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut...
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut = k uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x) a) Suppose k = 0.2, L = 1, and f(x) = 180x(1−x) 2 . Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution. b) What happens to the solution as t →...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT