Question

We can model the repayment of a mortgage with a differential equation. Suppose that y(t) is...

We can model the repayment of a mortgage with a differential equation. Suppose that y(t) is the amount still owed on the mortgage at time t, the rate of repayment per unit time is a, b is the interest rate, and that the initial amount of the mortgage is y0. (a) Find the differential equation for y(t). (b) Try a solution of the form y(t) = a/b+Cebt, where C is a constant to be determined from the initial conditions. Find C, plot the solution, and determine the time required to pay off the mortgage.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the differential equation y′′(t)+4y′(t)+5y(t)=74exp(−8t), with initial conditions y(0)=12, and y′(0)=−44. A)Find the Laplace transform of...
Consider the differential equation y′′(t)+4y′(t)+5y(t)=74exp(−8t), with initial conditions y(0)=12, and y′(0)=−44. A)Find the Laplace transform of the solution Y(s).Y(s). Write the solution as a single fraction in s. Y(s)= ______________ B) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form (c/(s-p)), where c is a constant and the root p is a constant. Both c and p may be complex. Y(s)= ____ + ______...
Consider the differential equation L[y] = y′′ + p(t)y′ + q(t)y = f(t) + g(t), and...
Consider the differential equation L[y] = y′′ + p(t)y′ + q(t)y = f(t) + g(t), and suppose L[yf] = f(t) and L[yg] = g(t). Explain why yp = yf + yg is a solution to L[y] = f + g. Suppose y and y ̃ are both solutions to L[y] = f + g, and suppose {y1, y2} is a fundamental set of solutions to the homogeneous equation L[y] = 0. Explain why y = C1y1 + C2y2 + yf...
Given the differential equation to the right y''-3y'+2y=0 a) State the auxiliary equation. b) State the...
Given the differential equation to the right y''-3y'+2y=0 a) State the auxiliary equation. b) State the general solution. c) Find the solution given the following initial conditions y(0)=4 and y'(0)=5
Consider the differential equation: y'' = y' + y a) derive the characteristic polynomial for the...
Consider the differential equation: y'' = y' + y a) derive the characteristic polynomial for the differential equation b) write the general form of the solution to the differential equation c) using the general solution, solve the initial value problem: y(0) = 0, y'(0) = 1 d) Using only the information provided in the description of the initial value problem, make an educated guess as to what the value of y''(0) is and explain how you made your guess
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
Solve the following differential equation. Put your solution in explicit form. y'-y=-t/sqrt(y)
Solve the following differential equation. Put your solution in explicit form. y'-y=-t/sqrt(y)
Find a general solution to the differential equation. y''-6y'+9y=t^-7e^3t. The general solution is y(t)=
Find a general solution to the differential equation. y''-6y'+9y=t^-7e^3t. The general solution is y(t)=
) Solve the differential equation dydt= cos⁡(t)y+sin(t) using either the method of variation of parameters or...
) Solve the differential equation dydt= cos⁡(t)y+sin(t) using either the method of variation of parameters or the method of integration factor. Clearly identify the integration factor or parameter v(t) used (depending on which method you use). Also identify the solution to the homogeneous equation, and the particular solution. The use your solution to find the solution to the IVP obtained by adding the initial condition y(0) = 1.
a) Find the general solution of the differential equation y''-2y'+y=0 b) Use the method of variation...
a) Find the general solution of the differential equation y''-2y'+y=0 b) Use the method of variation of parameters to find the general solution of the differential equation y''-2y'+y=2e^t/t^3
Logistic Equation The logistic differential equation y′=y(1−y) appears often in problems such as population modeling. (a)...
Logistic Equation The logistic differential equation y′=y(1−y) appears often in problems such as population modeling. (a) Graph the slope field of the differential equation between y= 0 and y= 1. Does the slope depend on t? (b) Suppose f is a solution to the initial value problem with f(0) = 1/2. Using the slope field, what can we say about fast→∞? What can we say about fast→−∞? (c) Verify that f(t) =11 +e−tis a solution to the initial value problem...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT