Question

Let U be the subspace of P2 consisting of quadratics for which f(-6)=f(-4). (a) For a...

Let U be the subspace of P2 consisting of quadratics for which f(-6)=f(-4). (a) For a generic quadratic f(x)=ax2+bx+c, write an equation for f(-6)=f(-4) and simplify it to give a constraint on the coefficients a, b and c.

(b) Treat this equation as an underdetermined linear system in a, b and c: identify free and bound variables, and from the solution identify a basis for U.

(c) Does adding the function f(x)=x to the basis in (b) create a basis for all of P2? Prove your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the vector space P2 := P2(F) and its standard basis α = {1,x,x^2}. 1Prove that...
Consider the vector space P2 := P2(F) and its standard basis α = {1,x,x^2}. 1Prove that β = {x−1,x^2 −x,x^2 + x} is also a basis of P2 2Given the map T : P2 → P2 defined by T(a + bx + cx2) = (a + b + c) + (a + 2b + c)x + (b + c)x2 compute [T]βα. 3 Is T invertible? Why 4 Suppose the linear map U : P2 → P2 has the matrix representation...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
1. Let u(x) and v(x) be functions such that u(1)=2,u′(1)=3,v(1)=6,v′(1)=−1 If f(x)=u(x)v(x), what is f′(1). Explain...
1. Let u(x) and v(x) be functions such that u(1)=2,u′(1)=3,v(1)=6,v′(1)=−1 If f(x)=u(x)v(x), what is f′(1). Explain how you arrive at your answer. 2. If f(x) is a function such that f(5)=9 and f′(5)=−4, what is the equation of the tangent line to the graph of y=f(x) at the point x=5? Explain how you arrive at your answer. 3. Find the equation of the tangent line to the function g(x)=xx−2 at the point (3,3). Explain how you arrive at your answer....
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that p(-1)=0. (a) Prove that S is a subspace of the vector space of all polynomials. (b) Find a basis for S. (c) What is the dimension of S? 6. Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2 =(1,2,-6,1), ?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2 =(3,1,2,-2). Prove that V=W.
Let f(x)=−6, g(x)=−4x+4 and h(x)=−9x2. Consider the inner product 〈p,q〉=∫40p(x)q(x)dx in the vector space C0[0,4] of...
Let f(x)=−6, g(x)=−4x+4 and h(x)=−9x2. Consider the inner product 〈p,q〉=∫40p(x)q(x)dx in the vector space C0[0,4] of continuous functions on the domain [0,4]. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of C0[0,4] spanned by the functions f(x), g(x), and h(x).
Show work please 1. Find the slant asymptote f(x)=(x^2-4)/(x-1) 2. Consider the rational function f(x)=(x^2-1)/(x^2+x-6) a....
Show work please 1. Find the slant asymptote f(x)=(x^2-4)/(x-1) 2. Consider the rational function f(x)=(x^2-1)/(x^2+x-6) a. The equations of the vertical asymptotes b. The equation of the horizontal asymptote c. The derivative of the function d. Critical point(s) e. Extrema, justify your answers
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x)...
Important Instructions: (1) λ is typed as lambda. (2) Use hyperbolic trig functions cosh(x) and sinh(x) instead of ex and e−x. (3) Write the functions alphabetically, so that if the solutions involve cos and sin, your answer would be Acos(x)+Bsin(x). (4) For polynomials use arbitrary constants in alphabetical order starting with highest power of x, for example, Ax2+Bx. (5) Write differential equations with leading term positive, so X′′−2X=0 rather than −X′′+2X=0. (6) Finally you need to simplify arbitrary constants. For...
3. Consider the region R in the first quadrant enclosed by y = x, y =...
3. Consider the region R in the first quadrant enclosed by y = x, y = x/2, and y = 5. (a) Sketch this region, making sure to identify and label all points of intersection. (b) Find the area of R, using the method of your choice. (c) Using the method of your choice, set up an integral for the volume of the solid resulting from rotating R around the y-axis. Do NOT evaluate the integral. (d) Using the method...
Your task will be to derive the equations describing the velocity and acceleration in a polar...
Your task will be to derive the equations describing the velocity and acceleration in a polar coordinate system and a rotating polar vector basis for an object in general 2D motion starting from a general position vector. Then use these expressions to simplify to the case of non-uniform circular motion, and finally uniform circular motion. Here's the time-dependent position vector in a Cartesian coordinate system with a Cartesian vector basis: ⃗r(t)=x (t) ̂ i+y(t) ̂ j where x(t) and y(t)...
Assessment Identify the Variables! In rotational kinematics - the variables are: t = time, which is...
Assessment Identify the Variables! In rotational kinematics - the variables are: t = time, which is measured in s (for seconds) θ = angle = what angle did the object turn thru, usually measured radians ωO = initial angular velocity = the rotational speed of the object at the beginning of the problem, which is measured in rad/s ω = final angular velocity = the rotational speed of the object at the end of the problem, which is measured in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT