Question

Let X = { a, b, c } and consider the ralation R on X given...

Let X = { a, b, c } and consider the ralation R on X given by R = {(a,a),(b, b),(c, c),(a,b),(b,c),(a, c),(c,a)}

Is R symmetric? Explain

Is R transitive? Explain

Is R reflexive? Explain

Remeber to explain your answer. Thanks.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c,...
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c, c), (a, b), (a, c), (c, b) } is: a. reflexive, antisymmetric, symmetric b. transitive, symmetric, antisymmetric c. antisymmetric, reflexive, transitive d. symmetric, reflexive, transitive
Let A = {1,2,3,4}. Give a directed graph for a non-empty relation on A that satisdies...
Let A = {1,2,3,4}. Give a directed graph for a non-empty relation on A that satisdies the given properties: a). R is antisymmetric, not reflexive and not symmetric. b). R is a partial order. c). R is reflexive and symmetric but not transitive. d). R is symmetric and transitive but not reflexive.
2. Let A, B, C be subsets of a universe U. Let R ⊆ A ×...
2. Let A, B, C be subsets of a universe U. Let R ⊆ A × A and S ⊆ A × A be binary relations on A. i. If R is transitive, then R−1 is transitive. ii. If R is reflexive or S is reflexive, then R ∪ S is reflexive. iii. If R is a function, then S ◦ R is a function. iv. If S ◦ R is a function, then R is a function
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Let A = R x R, and let a relation S be defined as: “(x1 ,...
Let A = R x R, and let a relation S be defined as: “(x1 , y1 ) S (x2 , y2 ) ⬄ points (x1 , y1 ) and (x2 , y2 ) are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you must give a counterexample
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your...
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your solution. (a) R is an equivalence relation. (b) R is transitive, but not symmetric. (c) R is neither symmetric nor reflexive nor transitive. (d) (5 points) R is antisymmetric and symmetric.
Consider the relation R defined on the real line R, and defined as follows: x ∼...
Consider the relation R defined on the real line R, and defined as follows: x ∼ y if and only if the distance from the point x to the point y is less than 3. Study if this relation is reflexive, symmetric, and transitive. Which points are related to 2?
2. Let R be a relation on the set of integers ℤ defined by ? =...
2. Let R be a relation on the set of integers ℤ defined by ? = {(?, ?): a2 + ?2 ?? ? ??????? ??????} Is this relation reflexive? Symmetric? transitive?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT