Question

Let A  =  58 9 1 9 20 9 59 9 A has λ  =  7...

Let

A  = 
58
9
1
9
20
9
59
9


A has λ  =  7 as an eigenvalue, with corresponding eigenvector  
1
5
 , and λ  =  6 as an eigenvalue, with corresponding eigenvector  
−1
4
 .  Find the solution to the system
y1   =  
58
9
y1  + 
1
9
y2
y2   =  
20
9
y1 +  
59
9
y2

that satisfies the initial conditions y1(0)  =  0 and  y2(0)  =  3. What is the value of y1(1)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. ?̇=??, ?= [3 −18 ; 2 −9]. (1) Find the eigenvalue of multiplicity two and...
2. ?̇=??, ?= [3 −18 ; 2 −9]. (1) Find the eigenvalue of multiplicity two and their corresponding (generalized) eigenvectors ?1= [3;?] and ?2= [?;0] respectively. (2) Let ?= ?^−1??.Find the matrix B. (3) Find ???. (4) Find the general solution of ?̇ = ??. (5) Let ?=??.Find the general solution of ?̇ = ??. (6) Find the solution with initial values x(0) =[4; 1].
1. For each of these problems, (i) verify by direct substitution that y1 and y2 are...
1. For each of these problems, (i) verify by direct substitution that y1 and y2 are both solutions of the ODE, and (ii) find the particular solution in the form y(x) = c1y1(x) + c2y2(x) that satisfies the given initial conditions. (a) y''+5y'-6y=0, y1(x) = e^−6x , y2(x) = e^x , y(0)=2, y'(0)=1
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find...
Find the function y1(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y1(0)=1,y′1(0)=0. y1(t)=? Find the function y2(t) which is the solution of 4y″+32y′+64y=0 with initial conditions y2(0)=0, y′2(0)=1. y2(t)= ? Find the Wronskian of these two solutions you have found: W(t)=W(y1,y2). W(t)=?
Find y as a function of x if x^2y''−17xy'+81y=x^7, y(1)=−3, y'(1)=4, given that y1=x^9, y2=x^9ln(x) are...
Find y as a function of x if x^2y''−17xy'+81y=x^7, y(1)=−3, y'(1)=4, given that y1=x^9, y2=x^9ln(x) are two solutions to the corresponding homogeneous equation.
6. Let A =   3 −12 4 −1 0 −2 −1 5 −1 ...
6. Let A =   3 −12 4 −1 0 −2 −1 5 −1   . 1 (a) Find all eigenvalues of A5 (Note: If λ is an eigenvalue of A, then λ n is an eigenvalue of A n for any integer n.). (b) Determine whether A is invertible (Check if the constant term of the characteristic polynomial χA(λ) is non-zero.). (c) If A is invertible, find (i) A−1 using the Cayley-Hamilton theorem (ii) All the eigenvalues...
1) find a solution for a given differential equation y1'=3y1-4y2+20cost ->y1 is not y*1 & y2...
1) find a solution for a given differential equation y1'=3y1-4y2+20cost ->y1 is not y*1 & y2 is not y*2 y2'=y1-2y2 y1(0)=0,y2(0)=8 2)by setting y1=(theta) and y2=y1', convert the following 2nd order differential equation into a first order system of differential equations(y'=Ay+g) (theta)''+4(theta)'+10(theta)=0
1. Let Q1 = x, where (x, y) satisfies that (1)x + (−3)y = −22 (−1)x...
1. Let Q1 = x, where (x, y) satisfies that (1)x + (−3)y = −22 (−1)x + (7)y = 54 . Let Q = ln(3+|Q1|). Then T = 5 sin2 (100Q) satisfies:— (A) 0 ≤ T < 1. — (B) 1 ≤ T < 2. — (C) 2 ≤ T < 3. — (D) 3 ≤ T < 4. — (E) 4 ≤ T ≤ 5. 2. Let (Q1, Q2) = (x, y), where (x, y) solves x = (7)x...
Let p = (8, 10, 3, 11, 4, 0, 5, 1, 6, 2, 7, 9) and...
Let p = (8, 10, 3, 11, 4, 0, 5, 1, 6, 2, 7, 9) and let q = (2, 4, 9, 5, 10, 6, 11, 7, 0, 8, 1, 3) be tone rows. Verify that p = Tk(R(I(q))) for some k, and find this value of k.
Find an equation of the curve that passes through the point and has the given slope....
Find an equation of the curve that passes through the point and has the given slope. (Enter your solution as an equation.) (0, 4), y' = x 6y 2. Find the particular solution of the differential equation that satisfies the initial condition. (Enter your solution as an equation.) Differential Equation Initial Condition y(1 + x2)y' − x(7 + y2) = 0 y(0) = 3
Find the solution of the initial value problem y′′+16y′+63y=0, y(0)=7 and y′(0)=−59. y(t)=
Find the solution of the initial value problem y′′+16y′+63y=0, y(0)=7 and y′(0)=−59. y(t)=