Question

(a) Prove that there does not exist a graph with 5 vertices with degree equal to...

(a) Prove that there does not exist a graph with 5 vertices with degree equal to 4,4,4,4,2.

(b) Prove that there exists a graph with 2n vertices with degrees 1,1,2,2,3,3,..., n-1,n-1,n,n.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if G is a connected graph with exactly 4 vertices of odd degree, there...
Prove that if G is a connected graph with exactly 4 vertices of odd degree, there exist two trails in G such that each edge is in exactly one trail. Find a graph with 4 vertices of odd degree that’s not connected for which this isn’t true.
Prove that every graph has two vertices with the same degree. (hint: what are the possible...
Prove that every graph has two vertices with the same degree. (hint: what are the possible degrees?)
Question 38 A simple connected graph with 7 vertices has 3 vertices of degree 1, 3...
Question 38 A simple connected graph with 7 vertices has 3 vertices of degree 1, 3 vertices of degree 2 and 1 vertex of degree 3. How many edges does the graph have? Question 29 Use two of the following sets for each part below. Let X = {a, b, c}, Y = {1, 2, 3, 4} and Z = {s, t}. a) Using ordered pairs define a function that is one-to-one but not onto. b) Using ordered pairs define...
For each of the following, either draw a graph or explain why one does not exist:...
For each of the following, either draw a graph or explain why one does not exist: a) Circuit-free graph, 6 vertices, 4 edges b) Graph, 5 vertices, all of degree 3 c) Complete graph, 4 vertices, has an Euler circuit d) Complete graph, 4 vertices, has a Hamiltonian circuit
I.15: If G is a simple graph with at least two vertices, prove that G has...
I.15: If G is a simple graph with at least two vertices, prove that G has two vertices of the same degree.    Hint: Let G have n vertices. What are possible different degree values? Different values if G is connected?
Prove the number of vertices of degree 1 in an tree must be greater than or...
Prove the number of vertices of degree 1 in an tree must be greater than or equal to the maximum degree in the tree. (Try either Contradiction or Direct Proof)
please use contradiction Prove the number of vertices of degree 1 in a tree must be...
please use contradiction Prove the number of vertices of degree 1 in a tree must be greater than or equal to the maximum degree in the tree.
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The...
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle on the graph and give the vertex list of the Eulerian Cycle. Draw a Bipartite Graph with 10 vertices that has an Eulerian Path and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle...
Let G be a simple graph in which all vertices have degree four. Prove that it...
Let G be a simple graph in which all vertices have degree four. Prove that it is possible to color the edges of G orange or blue so that each vertex is adjacent to two orange edges and two blue edges. Hint: The graph G has a closed Eulerian walk. Walk along it and color the edges alternately orange and blue.
How many vertices and edges does the complete tripartite graph K_m,n,p have? Prove your conjecture.
How many vertices and edges does the complete tripartite graph K_m,n,p have? Prove your conjecture.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT