Question

The complex function f(z) = 1/(z^4 - 1) has poles at +-1 and +-i, which may...

The complex function f(z) = 1/(z^4 - 1) has poles at +-1 and +-i, which may or may not contribute to the closed curve integral around C of f(z)dz. In turn, the closed curve C that you use depends on the 2nd letter of your first name! Specifically, convert that letter to its numerical position in the Roman alphabet (A=1, B=2, ..., Z=26), then divide by 4. Don't worry about fractions, just save the REMAINDER which will be an integer 0, 1, 2, or 3 (this is called Modular Arithmetic and is a very big area of math, but not in 422). If your remainder is 0 then your contour is C0, which is the unit circle centered at z=1 in the complex plane. If your remainder is 1 your contour is C1 the unit circle around i, C2 = unit circle around -1, and C3 = unit circle around -i. All contours are in the widdershins direction, as usual. I would like you to calculate integral_C f(z)dz around your personal circle.

The 2nd letter: h

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT