Question

Show that sequence {sn} converges if it is monotone and has a convergent subsequence.

Show that sequence {sn} converges if it is monotone and has a convergent subsequence.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that every Cauchy sequence of X has a convergent subsequence in X. Show that X...
Suppose that every Cauchy sequence of X has a convergent subsequence in X. Show that X is complete.
Prove that every bounded sequence has a convergent subsequence.
Prove that every bounded sequence has a convergent subsequence.
Find an example of a sequence, {xn}, that does not converge, but has a convergent subsequence....
Find an example of a sequence, {xn}, that does not converge, but has a convergent subsequence. Explain why {xn} (the divergent sequence) must have an infinite number of convergent subsequences.
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence,...
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence, then (an) converges; and (an) diverges to infinity if and only if (an) has an unbounded subsequence.
Prove that if a sequence converges to a limit x then very subsequence converges to x.
Prove that if a sequence converges to a limit x then very subsequence converges to x.
show that a sequence of measurable functions (fn) converges in measure if and only if every...
show that a sequence of measurable functions (fn) converges in measure if and only if every subsequence of (fn) has subsequence that converges in measure
suppose that the sequence (sn) converges to s. prove that if s > 0 and sn...
suppose that the sequence (sn) converges to s. prove that if s > 0 and sn >= 0 for all n, then the sequence (sqrt(sn)) converges to sqrt(s)
Prove: If x is a sequence of real numbers that converges to L, then any subsequence...
Prove: If x is a sequence of real numbers that converges to L, then any subsequence of x converges to L.
Prove that X is totally bounded if every sequence of X has a convergent subsequence. Please...
Prove that X is totally bounded if every sequence of X has a convergent subsequence. Please directly prove it without using any theorem on totally boundedness.
If a bounded sequence is the sum of a monotone increasing and a monotone decreasing sequence...
If a bounded sequence is the sum of a monotone increasing and a monotone decreasing sequence (xn = yn + zn where {yn} is monotone increasing and { zn} is monotone decreasing) does it follow that the sequence converges? What if {yn} and {zn} are bounded?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT