Question

6.                  Consider the initial value problem                   &

6.                  Consider the initial value problem

                                           y'’ + 2y + 2y = δ(tπ);           y(0) = 0, y(0) = 1.

a.    Find the solution to the initial value problem.

b.    Sketch a plot of the solution for t ∈ [0,3π].

c.    Describe the behavior of the solution. How is this system damped?

Homework Answers

Answer #1

Doubt in this then comment below.. i will help you..

.

please thumbs up for this solution...thanks..

.

c ) ....

as t increase, solution moves sinosoidal with amplitude decrease exponentially...

and at the end is tends toward 0...

.

since solution decrease and also for all value of t is is depend only on particular solution .therefore it is damped system....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the initial value problem 2y′′+11y′+5y=aδ(t−1), y(0)=y′(0)=0 , where δ denotes the impulse function. Suppose that...
Consider the initial value problem 2y′′+11y′+5y=aδ(t−1), y(0)=y′(0)=0 , where δ denotes the impulse function. Suppose that the solution of this initial value problem satisfies y(3)=(e^9−1)/e^10. Find the value of a.
Consider the following initial value problem, in which an input of large amplitude and short duration...
Consider the following initial value problem, in which an input of large amplitude and short duration has been idealized as a delta function. y′′−4y′=δ(t−4), y(0)=6, y′(0)=0. a. Find the Laplace transform of the solution. b. Obtain the solution y(t). c. Express the solution as a piecewise-defined function and think about what happens to the graph of the solution at t=4. y(t)= ___ if 0 (less than or equal to) t <4, AND ___ if 4 (less than or equal to)...
Consider the initial value problem dy dx = 1−2x 2y , y(0) = − √2 (a)...
Consider the initial value problem dy dx = 1−2x 2y , y(0) = − √2 (a) (6 points) Find the explicit solution to the initial value problem. (b) (3 points) Determine the interval in which the solution is defined.
Find the solution of the given initial value problem: y " + y = f(t); y(0)...
Find the solution of the given initial value problem: y " + y = f(t); y(0) = 6, y' (0) = 3 where f(t) = 1, 0 ≤ t < π 2 0, π 2 ≤ t < ∞
Use the Laplace transform to solve the given initial-value problem. y'' + 6y' + 34y =...
Use the Laplace transform to solve the given initial-value problem. y'' + 6y' + 34y = δ(t − π) + δ(t − 7π),    y(0) = 1,  y'(0) = 0
Use the Laplace transform to solve the given initial-value problem. y'' + 10y' + 41y =...
Use the Laplace transform to solve the given initial-value problem. y'' + 10y' + 41y = δ(t − π) + δ(t − 7π),    y(0) = 1,  y'(0) = 0
Consider the following. (A computer algebra system is recommended.) y' = 3x/(y+x^2y') (a) Find the solution...
Consider the following. (A computer algebra system is recommended.) y' = 3x/(y+x^2y') (a) Find the solution of the given initial value problem in explicit form. y' = 3x/(y+x^2y') y(0)=-6 question asks for answer in terms of y(x)= (b) Plot the graph of the solution.
Let y = y ( t ) be the solution to the initial value problem   ...
Let y = y ( t ) be the solution to the initial value problem    t d y d t + 2 y = sin ⁡ t , y ( π ) = 0 Find the value of
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. A. y′′+16y...
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. A. y′′+16y = {1, 0 ≤ t < π = {0, π ≤ t < ∞, y(0)=3, y′(0)=5 B. y′′ + 4y = { t, 0 ≤ t < 1 = {1, 1 ≤ t < ∞, y(0)=3, y′(0)=3
consider y"+2y'+y=0 (a) verify that y1=e^(-x) is a solution (b) solve the initial value problem y"+2y'+y=0,...
consider y"+2y'+y=0 (a) verify that y1=e^(-x) is a solution (b) solve the initial value problem y"+2y'+y=0, y(0)=2, y'(0)=-1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT