Question

Conjecture a formula for the sum 1/1*3 + 1/3*5 + ... + 1/(2n-1)(2n+1), and prove your...

Conjecture a formula for the sum 1/1*3 + 1/3*5 + ... + 1/(2n-1)(2n+1), and prove your conjecture by using Mathematical Induction.

PLEASE SHOW ALL WORK! PARTICULARLY WITH DEVELOPING FORUMLA!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove using mathematical induction that 20 + 21 + ... + 2n = 2n+1 - 1...
Prove using mathematical induction that 20 + 21 + ... + 2n = 2n+1 - 1 whenever n is a nonnegative integer.
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n =...
Use Mathematical Induction to prove that 3 | (n^3 + 2n) for all integers n = 0, 1, 2, ....
Conjecture a formula for the value of 9n mod 10, and prove it correct by induction...
Conjecture a formula for the value of 9n mod 10, and prove it correct by induction on n. (Hint: try computing 9n mod 10 for a few small values of n to generate your conjecture.)
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n...
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n >= 0.
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤...
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤ 2 · 4n for all integers n ≥ 3. (b) Let f(n) = 2n+1 + 3n+1 and g(n) = 4n. Using the inequality from part (a) prove that f(n) = O(g(n)). You need to give a rigorous proof derived directly from the definition of O-notation, without using any theorems from class. (First, give a complete statement of the definition. Next, show how f(n) =...
1) Find the sum S of the series where S = Σ i ai -- here...
1) Find the sum S of the series where S = Σ i ai -- here i varies from 1 to n. Use the mathematical induction to prove the following: 2) 13 + 33 + 53 + …. + (2n-1)3 = n2(2n2-1) 3) Show that n! > 2n for all n > 3. 4) Show that 9(9n -1) – 8n is divisible by 64. Show all the steps and calculations for each of the above and explain your answer in...
Show by induction that 1 + 3 + 5 + · · · + (2n −...
Show by induction that 1 + 3 + 5 + · · · + (2n − 1) = n^2 for all positive integer n
Prove that 1/(2n) ≤ [1 · 3 · 5 · ··· · (2n − 1)]/(2 ·...
Prove that 1/(2n) ≤ [1 · 3 · 5 · ··· · (2n − 1)]/(2 · 4 · ··· · 2n) whenever n is a positive integer.
Problem 3. Prove by induction that 1/ (1 · 3 )+ 1 /(3 · 5 )...
Problem 3. Prove by induction that 1/ (1 · 3 )+ 1 /(3 · 5 ) + · · · + 1 /(2n − 1) · (2n + 1) = n / 2n + 1 .
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19