Question

The temperature at the point (x, y, z) in a substance with conductivity K = 7.5...

The temperature at the point (x, y, z) in a substance with conductivity

K = 7.5 is u(x, y, z) = 4y2 + 4z2.

Find the rate of heat flow inward across the cylindrical surface

y2 + z2 = 3, 0 ≤ x ≤ 2.

Last attempt remaining. Please solve carefully.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Integrate G(x,y,z) = xy2z over the cylindrical surface y2 + z2= 9, 0 ≤ x ≤...
Integrate G(x,y,z) = xy2z over the cylindrical surface y2 + z2= 9, 0 ≤ x ≤ 4, z ≥ 0.
The temperature at a point (x, y, z) is given by T(x, y, z) = 10e^(− ...
The temperature at a point (x, y, z) is given by T(x, y, z) = 10e^(− 2x2 − y2 − 3z2). In which direction does the temperature increase fastest at the point (2, 1, 3)? Express your answer as a UNIT vector.
The temperature at a point (x,y,z) is given by T(x,y,z)=200e−x2−y2/4−z2/9, where Tis measured in degrees celcius...
The temperature at a point (x,y,z) is given by T(x,y,z)=200e−x2−y2/4−z2/9, where Tis measured in degrees celcius and x,y, and z in meters. There are lots of places to make silly errors in this problem; just try to keep track of what needs to be a unit vector. Find the rate of change of the temperature at the point (0, 1, -2) in the direction toward the point (-1, -2, 5). In which direction (unit vector) does the temperature increase the...
(1) Sketch the given surfaces ( for Question (a) and (b) graph x=0, y=0 and z=2...
(1) Sketch the given surfaces ( for Question (a) and (b) graph x=0, y=0 and z=2 traces) (a) x2-4y2=z (b) y2-4x2-z2=4 (2) state the type of the quadric surface and describe the trace obtained by intersecting with the given plane. (x/2)2+(y/5)2-5z2=1, x=0
The temperature at a point (x,y,z) is given by T(x,y,z)=200e−x2−y2/4−z2/9, where T is measured in degrees...
The temperature at a point (x,y,z) is given by T(x,y,z)=200e−x2−y2/4−z2/9, where T is measured in degrees celsius and x,y, and z in meters. There are lots of places to make silly errors in this problem; just try to keep track of what needs to be a unit vector. A. Find the rate of change of the temperature at the point (0, -1, 2) in the direction toward the point (-1, 4, 2). b)In which direction (unit vector) does the temperature...
Let F=(x2+y+2+z2)i+(ex2+y2)j+(3+x)k. Let a>0 and let S be part of the spherical surface x2+y2+z2=2az+15a2 that is...
Let F=(x2+y+2+z2)i+(ex2+y2)j+(3+x)k. Let a>0 and let S be part of the spherical surface x2+y2+z2=2az+15a2 that is above the x-y plane. Find the flux of F outward across S.
Given the function f(x, y, z) = (x2 + y2 + z2 )−1/2 a) what is...
Given the function f(x, y, z) = (x2 + y2 + z2 )−1/2 a) what is the gradient at the point (12,0,16)? b) what is the directional derivative of f in the direction of the vector u = (1,1,1) at the point (12,0,16)?
The temperature at a point (x, y, z) is given by T(x, y, z) = 100e^(−x^2...
The temperature at a point (x, y, z) is given by T(x, y, z) = 100e^(−x^2 − 3y^2 − 9z^2) where T is measured in °C and x, y, z in meters. (a) Find the rate of change of temperature at the point P(2, −1, 2) in the direction towards the point (5, −2, 3). (b) In which direction does the temperature increase fastest at P? (c) Find the maximum rate of increase at P.
The temperature at a point (x, y, z) is given by T(x, y, z) = 400e−x2...
The temperature at a point (x, y, z) is given by T(x, y, z) = 400e−x2 − 5y2 − 9z2 where T is measured in °C and x, y, z in meters. (a) Find the rate of change of temperature at the point P(2, −1, 2) in the direction towards the point (3, −5, 6). °C/m (b) In which direction does the temperature increase fastest at P? (c) Find the maximum rate of increase at P.
Let F(x,y,z) = ztan-1(y^2) i + (z^3)ln(x^2 + 8) j + z k. Find the flux...
Let F(x,y,z) = ztan-1(y^2) i + (z^3)ln(x^2 + 8) j + z k. Find the flux of F across the part of the paraboloid x2 + y2 + z = 20 that lies above the plane z = 4 and is oriented upward.