Question

find the c.d.p(f(x)) of a random variable with geometric distribution with parameter o<pci and based on...

find the c.d.p(f(x)) of a random variable with geometric distribution with parameter o<pci and based on the formula that you derive for F(x) shows that it is increasing.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be a geometric random variable with parameter p . Find the probability that X≥10...
Let X be a geometric random variable with parameter p . Find the probability that X≥10 . Express your answer in terms of p using standard notation (click on the “STANDARD NOTATION" button below.)
Suppose that X|λ is an exponential random variable with parameter λ and that λ|p is geometric...
Suppose that X|λ is an exponential random variable with parameter λ and that λ|p is geometric with parameter p. Further suppose that p is uniform between zero and one. Determine the pdf for the random variable X and compute E(X).
If X and Y are independent, where X is a geometric random variable with parameter 3/4...
If X and Y are independent, where X is a geometric random variable with parameter 3/4 and Y is a standard normal random variable. Compute E(e X), E(e Y ) and E(e X+Y ).
If X and Y are independent, where X is a geometric random variable with parameter 3/4...
If X and Y are independent, where X is a geometric random variable with parameter 3/4 and Y is a standard normal random variable. Compute E(e^X), E(e^Y ) and E(e^(X+Y) ).
a is a random variable which follows geometric distribution, with parameter p = 0.1. b =...
a is a random variable which follows geometric distribution, with parameter p = 0.1. b = ln(a) 1. what is the probability mass function of b. 2 Prob (b> ln(3)) = ?
suppose random variable X has an exponential distribution with parameter lambda=4. Find the median of X.
suppose random variable X has an exponential distribution with parameter lambda=4. Find the median of X.
Suppose Y_1, Y_2,… Y_n denote a random sample of a geometric distribution with parameter p. Find...
Suppose Y_1, Y_2,… Y_n denote a random sample of a geometric distribution with parameter p. Find the maximum likelihood estimator for p.
Consider a random variable X following the exponential distribution X ~ f(x), where f(x) = ae^(...
Consider a random variable X following the exponential distribution X ~ f(x), where f(x) = ae^( -ax) for x > 0 and 0 otherwise, a > 0. Derive its moment-generating function MX(t) and specify its domain (where it is defined or for what t does the integral exist). Use it to compute the first four non-central moments of X and then derive the general formula for the nth non-central moment for any positive integer n. Also, write down the expression...
If ? and ? are both identical but independent Geometric random variables with parameter ?, find...
If ? and ? are both identical but independent Geometric random variables with parameter ?, find the probability that ?(? = ?).
Given that X is a geometric random variable with success probability = 1/3, Find Pr(X<1003 |...
Given that X is a geometric random variable with success probability = 1/3, Find Pr(X<1003 | X>1000). (Hint: must use memory-less property of geometric random variables).