Step 1 : | |||||
EMI = [P x R x (1+R)^N]/[(1+R)^N-1] | |||||
Where, | |||||
EMI= Equal Monthly Payment | |||||
P= Loan Amount | |||||
R= Interest rate per period | |||||
N= Number of periods | |||||
= [ $10000x0.02 x (1+0.02)^60]/[(1+0.02)^60 -1] | |||||
= [ $200( 1.02 )^60] / [(1.02 )^60 -1 | |||||
=$287.68 | |||||
Step 2 : | Loan due after 25th payment | ||||
Present Value Of An Annuity | |||||
= C*[1-(1+i)^-n]/i] | |||||
Where, | |||||
C= Cash Flow per period | |||||
i = interest rate per period | |||||
n=number of period | |||||
= $287.6796[ 1-(1+0.02)^-35 /0.02] | |||||
= $287.6796[ 1-(1.02)^-35 /0.02] | |||||
= $287.6796[ (0.5) ] /0.02 | |||||
= $7,191.59 | |||||
Step 3 : | Calculation of single payment | ||||
=7191.59*1.02 | |||||
=$7335.42 |
Get Answers For Free
Most questions answered within 1 hours.