1. CVP Analysis; Break-even point, margin of safety: Davies’ Violins, Ltd, produces and sells a single product, violins, whose selling price is $175.00 per unit and whose variable cost is $62.00 per unit. The company's fixed expense is $15,430 per month. The current volume of sales is 200 violins per month.
2. CVP analysis; break even: K-9’s Companions, Inc. operates a chain of pet supply stores that carry many styles of dog beds that are all sold at the same price. The following data pertains to K-9’s Companions and is typical of the company’s many outlets:
Per dog bed |
|||||
Selling price |
$ |
46.00 |
|||
Variable expenses (per unit): |
|||||
Product costs (DM, DL, MOH) |
$ |
23.50 |
|||
Selling and admin costs |
4.75 |
||||
Per month: |
|||||
Fixed expenses (monthly amounts): |
|||||
Advertising |
$ |
10,500 |
|||
Rent |
3,100 |
||||
Administrative Salaries |
27,250 |
||||
1 | |||||
a. | Total contribution margin=current volume of sales*Contribution margin per unit | ||||
Contribution margin per unit=Selling price-Variable cost=175-62=$ 113 per unit | |||||
Total contribution margin=200*113=$ 22600 | |||||
b. | Net income=Total contribution margin-Fixed expense=22600-15430==$ 7170 | ||||
c. | Break-even point in units=Fixed expense/Contribution margin per unit=15430/113=136.55=137 units | ||||
Break-even point in sales $=Fixed expense/Contribution margin ratio | |||||
Contribution margin ratio=Contribution margin per unit/Selling price=113/175=0.645714 | |||||
Break-even point in sales $=15430/0.645714=$ 23896.03 | |||||
a. | Margin of safety in units=Actual sales in units-Break even sales in units=200-137=63 units | ||||
Margin of safety in sales $=Actual sales in $-Break even sales in $=(200*175)-23896=35000-23896=$ 11104 | |||||
b. | Unit sales needed to attain this target profit=(Fixed expense+Target profit)/Contribution margin per unit=(15430+31000)/113=411 | ||||
$ sales needed to attain this target profit=(Fixed expense+Target profit)/Contribution margin ratio=(15430+31000)/0.645714=$ 71905 | |||||
2 | |||||
a. | Break-even point in units=Fixed expense/Contribution margin per unit | ||||
Fixed expenses: | |||||
$ | |||||
Advertising | 10500 | ||||
Rent | 3100 | ||||
Administrative salaries | 27250 | ||||
Total | 40850 | ||||
Contribution margin per unit: | |||||
$ | $ | ||||
Selling price | 46 | ||||
Less: Variable expenses | |||||
Product costs | 23.5 | ||||
Selling and admin costs | 4.75 | 28.25 | |||
Contribution margin per unit: | 17.75 | ||||
Break-even point in units=40850/17.75=2302 | |||||
Break-even point in sales $=Fixed expense/Contribution margin ratio | |||||
Contribution margin ratio=Contribution margin per unit/Selling price=17.75/46=0.38587 | |||||
Break-even point in sales $=40850/0.38587=$ 105864.7 | |||||
b. | Net operating income=Total contribution margin-Fixed expense | ||||
Total contribution margin=current volume of sales*Contribution margin per unit=2000*17.75=$ 35500 | |||||
Net operating income (loss)=35500-40850=$-5350 | |||||
c. | Net operating income=Total contribution margin-Fixed expense | ||||
Total contribution margin=current volume of sales*Contribution margin per unit=2800*17.75=$ 49700 | |||||
Net operating income (loss)=49700-40850=$ 8850 | |||||
d. | |||||
i. | Break-even point in units=Fixed expense/Contribution margin per unit | ||||
Fixed expenses: | |||||
$ | |||||
Advertising | (10500+2700) | 13200 | |||
Rent | 3100 | ||||
Administrative salaries | 27250 | ||||
Total | 43550 | ||||
Contribution margin per unit: | |||||
$ | $ | ||||
Selling price | 46 | ||||
Less: Variable expenses | |||||
Product costs | (23.5+0.45) | 23.95 | |||
Selling and admin costs | 4.75 | 28.7 | |||
Contribution margin per unit: | 17.3 | ||||
Break-even point in units=43550/17.3=2518 | |||||
ii. | Net income=Total contribution margin-Fixed expense | ||||
Total contribution margin=current volume of sales*Contribution margin per unit=(2800+150)*17.3=$ 51035 | |||||
Net operating income (loss)=51035-43550=$ 7485 | |||||
iii. | Firm should not make the change | ||||
Since net income decreased by $ 1365 (8850-7485) |
Get Answers For Free
Most questions answered within 1 hours.