Question

Marty's Barber Shop has one barber. Customers have an arrival rate of 2.3 customers per hour,...

Marty's Barber Shop has one barber. Customers have an arrival rate of 2.3 customers per hour, and haircuts are given with a service rate of 4 per hour. Use the Poisson arrivals and exponential service times model to answer the following questions:

What is the probability that no units are in the system? If required, round your answer to four decimal places.

P0 = _____

What is the probability that one customer is receiving a haircut and no one is waiting? If required, round your answer to four decimal places.

P1 = ______

What is the probability that one customer is receiving a haircut and one customer is waiting? If required, round your answer to four decimal places.

P2 =______

What is the probability that one customer is receiving a haircut and two customers are waiting? If required, round your answer to four decimal places.

P3 = _____-

What is the probability that more than two customers are waiting? If required, round your answer to four decimal places.

P(More than 2 waiting) = _______

What is the average time a customer waits for service? If required, round your answer to four decimal places.

Wq = ______ hours

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 15-9 (Algorithmic) Marty's Barber Shop has one barber. Customers have an arrival rate of 2.3...
Problem 15-9 (Algorithmic) Marty's Barber Shop has one barber. Customers have an arrival rate of 2.3 customers per hour, and haircuts are given with a service rate of 4 per hour. Use the Poisson arrivals and exponential service times model to answer the following questions: What is the probability that no units are in the system? If required, round your answer to four decimal places. P0 = What is the probability that one customer is receiving a haircut and no...
Problem 15-9 (Algorithmic) Marty's Barber Shop has one barber. Customers have an arrival rate of 2.2...
Problem 15-9 (Algorithmic) Marty's Barber Shop has one barber. Customers have an arrival rate of 2.2 customers per hour, and haircuts are given with a service rate of 4 per hour. Use the Poisson arrivals and exponential service times model to answer the following questions: What is the probability that no units are in the system? If required, round your answer to four decimal places. P0 = What is the probability that one customer is receiving a haircut and no...
1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank...
1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 6 customers per hour or 0.1 customers per minute. Also assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 54 customers per hour, or 0.9 customers per minute. Determine the...
A barber owns a one-chair shop. At barber college, he was told that his customers would...
A barber owns a one-chair shop. At barber college, he was told that his customers would exhibit a Poission arrival distribution and that he would provide an exponential service distribution. His market survey data indicate that customers arrive at the rate of two per hour and that it takes him an average of 20 minutes to give a haircut. Based on these figures, find the following: The average number of customers waiting in line. (2 pts) The average time a...
in an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service...
in an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service rate is 14 customers per hour. What is the utilization? (Round your answer to 3 decimal places.) What is the expected number of customers in the system (L)? (Round your answer to 3 decimal places.) What is the expected waiting time in the system (W)? (Express the waiting time in hours, round your answer to 3 decimal places.) What is the expected number of...
Speedy Oil provides a single-server automobile oil change and lubrication service. Customers provide an arrival rate...
Speedy Oil provides a single-server automobile oil change and lubrication service. Customers provide an arrival rate of 4 cars per hour. The service rate is 5 cars per hour. Assume that arrivals follow a Poisson probability distribution and that service times follow an exponential probability distribution. A) What is the average number of cars in the system? If required, round your answer to two decimal places L = B) What is the average time that a car waits for the...
n an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service...
n an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service rate is 14 customers per hour. What is the utilization? (Round your answer to 3 decimal places.) What is the expected number of customers in the system (L)? (Round your answer to 3 decimal places.) What is the expected waiting time in the system (W)? (Express the waiting time in hours, round your answer to 3 decimal places.) What is the expected number of...
Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions...
Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 30 customers per hour or 0.5 customers per minute. In the same bank waiting line system, assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 36 customers per hour, or 0.6...
Problem 15-3 (Algorithmic) Willow Brook National Bank operates a drive-up teller window that allows customers to...
Problem 15-3 (Algorithmic) Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 18 customers per hour or 0.3 customers per minute. In the same bank waiting line system, assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 30 customers per...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5 hour (repair time) =2.5 hours With m = 1/ 2.5 = 0.4 hours per customers ** PLEASE SHOW HOW TO DO EQUATION ** OEI is satisfied that one service technician can handle the 10 existing customers. Use a waiting line model to determine the following information: (a) probability that no customers are in the system, (b) average number of customers in the waiting line,...