Question

10. Suppose you invested $2,000 in a CD on January 1, 2016 maturing 5 years that pays interest of 4% per year compounded monthly and credited at the end of each month. You don't withdraw any money for the CD during the term.

(a.) How much money will be in the CD account on January 1, 2021?

(b.) What is the effective annual rate of interest on this CD?

Answer #1

a)In order to find our value of CD on januray 1, 2021 we will use formula:

C=P(1+r)^n

Where,

C=Future value

P=Principal=2000

r=ROI=4%/12=0.04/12 (Divided by 12 for monthly compounding)

n=No. of compounding periods=5*12=60 (Multiplied by 12 for monthly compounding)

Hence,

C=2000*[(1+(0.04/12))^60]

=2000*[(1+0.003333)^60]

=2000(1.22099659)

**=$2,441.993**

**Thus, we will get $2,441.993 on January 1,
2021**

b)effective annual rate=(1+i/n)^n-1

Where i=Annual ROI=4%=0.04

n=No. of compoundings per anum=12

putting in formula,

=(1+0.04/12)^12-1

=(1.003333)^12-1

=1.04074-1

=0.04074

**=4.074%**

**Thus, effective annual rate is 4.074%**

*If helpful, Thumbs UP please!!!*

Suppose you invested $5,000 in a CD on January 1, 2015 maturing
in 20 years that pays interest of 4% per year compounded
semiannually and credited at the end of each six month period. You
don't withdraw any money from the CD during its term.
(a) How much money was in the CD account on July 1, 2015?
b) How much money was in the CD account on January 1, 2016?
(c) How much money will be in the CD...

Suppose you invested $5,000 in a CD on January 1, 2015 maturing
in 20 years that pays interest of 4% per year compounded
semiannually and credited at the end of each six month period. You
don't withdraw any money from the CD during its term.
(a) How much money was in the CD account on July 1, 2015?
(b) How much money was in the CD account on January 1, 2016?
(c) How much money will be in the CD...

Suppose that you invested $4,000 in a CD on January 1, 2015
maturing in 5 years that pays interest of 3% per year compounded
monthly and credited at the end of each month. You don't withdraw
any money from the CD during its term.
(a) How much money was in the CD account on
February 1, 2015?
(b) How much money was in the CD account on March 1,
2015?
c) How much money will be in the CD account on
January 1,...

3. Suppose you invest $20,000 in a CD on January 1, 2020
maturing in 14 years that pays interest of 5% per year compounded
semiannually (meaning every six months) and credited at the end of
each six month period. You don't withdraw any money from the CD
during the term.
(a) How much money is in the CD account on July 1,
2020?
(b) How much money is in the CD account on January 1,
2021?
(c) How much money...

Suppose you were hired on January 1, 2010 and started depositing
$200 at the end of each month, with the first deposit on January
31, 2010, in a pension fund that pays interest of 9% per year
compounded monthly on the minimum monthly balance and credited at
the end of each month.
(a) How much money was in the pension fund on February 1,
2010?
(b) How much money was in the pension fund on March 1, 2010?
(c) How...

Suppose that on January 1, 2018, you buy a bond for $2,000 that
will pay interest of 3.6% per year compounded continuously for 20
years. You never withdraw any of the interest earned on the
bond.
(a) What will the bond be worth on January 1, 2038?
(b) Suppose that on January 1, 2020, the prevailing rate of
interest on bonds maturing on January 1, 2038 becomes 6% per year
compounded continuously. Assume that the market value of your bond...

1. You currently have AED40,000 and plans to purchase a 5-year
certificate of deposit (CD).
a. How much will you have when the CD matures if it pays 7%
interest, compounded annually?
b. How much will you have when the CD matures if it pays 6%, or
20% interest, compounded annually?
c. How much will you have when the CD matures if it pays 6%, or
20% interest, compounded semiannually?
d. Why does the annual compounding and semiannual compounding
give...

Assume that you have $3000 to invest for 5 years. You could
purchase a 5-year CD with a guaranteed interest rate of 2.52%
compounded monthly. On the other hand, if you are willing to face
the risk of actually losing your money, you could invest it in the
stock market which has an historical return rate of about 6.5% per
year. Think of this as investing your money in a
non-guaranteed account that pays 6.5% APR compounded
annually.
With the...

You want to make equal deposits at the end of each month for 10
years into an account with annual interest rate 8% compounded
monthly, and then withdraw $200 at the end of each month for the
following 15 years, ending with a zero balance. How much do your
monthly deposits need to be?

suppose you invest $190 at the end of each month for 5 years
into an account earning 7% annual interest compounded monthly.
After 5 years, you leave the money, without making additional
deposits, in the account for another 21 years. How much will you
have in the end?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 38 minutes ago

asked 42 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago