Present and future value tables of $1 at 3% are presented
below:
N |
FV $1 |
PV $1 |
FVA $1 |
PVA $1 |
FVAD $1 |
PVAD $1 |
1 |
1.03000 |
0.97087 |
1.0000 |
0.97087 |
1.0300 |
1.00000 |
2 |
1.06090 |
0.94260 |
2.0300 |
1.91347 |
2.0909 |
1.97087 |
3 |
1.09273 |
0.91514 |
3.0909 |
2.82861 |
3.1836 |
2.91347 |
4 |
1.12551 |
0.88849 |
4.1836 |
3.71710 |
4.3091 |
3.82861 |
5 |
1.15927 |
0.86261 |
5.3091 |
4.57971 |
5.4684 |
4.71710 |
6 |
1.19405 |
0.83748 |
6.4684 |
5.41719 |
6.6625 |
5.57971 |
7 |
1.22987 |
0.81309 |
7.6625 |
6.23028 |
7.8923 |
6.41719 |
8 |
1.26677 |
0.78941 |
8.8923 |
7.01969 |
9.1591 |
7.23028 |
9 |
1.30477 |
0.76642 |
10.1591 |
7.78611 |
10.4639 |
8.01969 |
10 |
1.34392 |
0.74409 |
11.4639 |
8.53020 |
11.8078 |
8.78611 |
11 |
1.38423 |
0.72242 |
12.8078 |
9.25262 |
13.1920 |
9.53020 |
12 |
1.42576 |
0.70138 |
14.1920 |
9.95400 |
14.6178 |
10.25262 |
13 |
1.46853 |
0.68095 |
15.6178 |
10.63496 |
16.0863 |
10.95400 |
14 |
1.51259 |
0.66112 |
17.0863 |
11.29607 |
17.5989 |
11.63496 |
15 |
1.55797 |
0.64186 |
18.5989 |
11.93794 |
19.1569 |
12.29607 |
16 |
1.60471 |
0.62317 |
20.1569 |
12.56110 |
20.7616 |
12.93794 |
At the end of each quarter, Patti deposits $1,700 into an account
that pays 12% interest compounded quarterly. How much will Patti
have in the account in 4 years?
Patti have in the account in 4 years will be calculated using the future value formula or compound interest quarterly will be used.
Future value = Present Value ( 1 + r )^{n}
Present value = $ 1700 (given)
r = 3% ( 12 % is annual interest for 3 months we will divide 12% / 4 it will be 3 %, we have divided by 4 because in a year 4 quarters are there)
n= no of period so 16 quarters in 4 years
Future value = 1700 ( 1 + 0.03 )^{16}
Future value = 1700(1.03)^{16}
Future value = 1700 ( 1.60471 )
At Future value (1.03)^{16} will be 1.60471 as given above
Future value = $ 2728.007
Get Answers For Free
Most questions answered within 1 hours.